ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerth GIF version

Theorem eulerth 12365
Description: Euler's theorem, a generalization of Fermat's little theorem. If 𝐴 and 𝑁 are coprime, then 𝐴↑ϕ(𝑁)≡1 (mod 𝑁). This is Metamath 100 proof #10. Also called Euler-Fermat theorem, see theorem 5.17 in [ApostolNT] p. 113. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
eulerth ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))

Proof of Theorem eulerth
Dummy variables 𝑓 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phicl 12347 . . . . . . . 8 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ)
21nnnn0d 9287 . . . . . . 7 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ0)
3 hashfz1 10848 . . . . . . 7 ((ϕ‘𝑁) ∈ ℕ0 → (♯‘(1...(ϕ‘𝑁))) = (ϕ‘𝑁))
42, 3syl 14 . . . . . 6 (𝑁 ∈ ℕ → (♯‘(1...(ϕ‘𝑁))) = (ϕ‘𝑁))
5 dfphi2 12352 . . . . . 6 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
64, 5eqtrd 2226 . . . . 5 (𝑁 ∈ ℕ → (♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
763ad2ant1 1020 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
8 1zzd 9338 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 1 ∈ ℤ)
913ad2ant1 1020 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ ℕ)
109nnzd 9432 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ϕ‘𝑁) ∈ ℤ)
118, 10fzfigd 10496 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (1...(ϕ‘𝑁)) ∈ Fin)
12 id 19 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
13 oveq1 5921 . . . . . . . 8 (𝑘 = 𝑦 → (𝑘 gcd 𝑁) = (𝑦 gcd 𝑁))
1413eqeq1d 2202 . . . . . . 7 (𝑘 = 𝑦 → ((𝑘 gcd 𝑁) = 1 ↔ (𝑦 gcd 𝑁) = 1))
1514cbvrabv 2759 . . . . . 6 {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
1612, 15eulerthlemfi 12360 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin)
17 hashen 10849 . . . . 5 (((1...(ϕ‘𝑁)) ∈ Fin ∧ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin) → ((♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) ↔ (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
1811, 16, 17syl2anc 411 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) ↔ (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
197, 18mpbid 147 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
20 bren 6796 . . 3 ((1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ↔ ∃𝑓 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
2119, 20sylib 122 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ∃𝑓 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
22 simpl 109 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
23 simpr 110 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
2422, 15, 23eulerthlemth 12364 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
2521, 24exlimddv 1910 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1503  wcel 2164  {crab 2476   class class class wbr 4029  1-1-ontowf1o 5249  cfv 5250  (class class class)co 5914  cen 6787  Fincfn 6789  0cc0 7866  1c1 7867  cn 8976  0cn0 9234  cz 9311  ...cfz 10068  ..^cfzo 10202   mod cmo 10387  cexp 10603  chash 10840   gcd cgcd 12073  ϕcphi 12341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4567  ax-iinf 4618  ax-cnex 7957  ax-resscn 7958  ax-1cn 7959  ax-1re 7960  ax-icn 7961  ax-addcl 7962  ax-addrcl 7963  ax-mulcl 7964  ax-mulrcl 7965  ax-addcom 7966  ax-mulcom 7967  ax-addass 7968  ax-mulass 7969  ax-distr 7970  ax-i2m1 7971  ax-0lt1 7972  ax-1rid 7973  ax-0id 7974  ax-rnegex 7975  ax-precex 7976  ax-cnre 7977  ax-pre-ltirr 7978  ax-pre-ltwlin 7979  ax-pre-lttrn 7980  ax-pre-apti 7981  ax-pre-ltadd 7982  ax-pre-mulgt0 7983  ax-pre-mulext 7984  ax-arch 7985  ax-caucvg 7986
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-po 4325  df-iso 4326  df-iord 4395  df-on 4397  df-ilim 4398  df-suc 4400  df-iom 4621  df-xp 4663  df-rel 4664  df-cnv 4665  df-co 4666  df-dm 4667  df-rn 4668  df-res 4669  df-ima 4670  df-iota 5211  df-fun 5252  df-fn 5253  df-f 5254  df-f1 5255  df-fo 5256  df-f1o 5257  df-fv 5258  df-isom 5259  df-riota 5869  df-ov 5917  df-oprab 5918  df-mpo 5919  df-1st 6188  df-2nd 6189  df-recs 6353  df-irdg 6418  df-frec 6439  df-1o 6464  df-oadd 6468  df-er 6582  df-en 6790  df-dom 6791  df-fin 6792  df-sup 7037  df-pnf 8050  df-mnf 8051  df-xr 8052  df-ltxr 8053  df-le 8054  df-sub 8186  df-neg 8187  df-reap 8588  df-ap 8595  df-div 8686  df-inn 8977  df-2 9035  df-3 9036  df-4 9037  df-n0 9235  df-z 9312  df-uz 9587  df-q 9679  df-rp 9714  df-fz 10069  df-fzo 10203  df-fl 10333  df-mod 10388  df-seqfrec 10513  df-exp 10604  df-ihash 10841  df-cj 10980  df-re 10981  df-im 10982  df-rsqrt 11136  df-abs 11137  df-clim 11416  df-proddc 11688  df-dvds 11925  df-gcd 12074  df-phi 12343
This theorem is referenced by:  fermltl  12366  prmdiv  12367  odzcllem  12374  odzphi  12378  vfermltl  12383  lgslem1  15097
  Copyright terms: Public domain W3C validator