| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocsr | GIF version | ||
| Description: An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocsr.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| suplocsr.ub | ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) |
| suplocsr.loc | ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) |
| Ref | Expression |
|---|---|
| suplocsr | ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplocsr.m | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | eleq1w 2290 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) | |
| 3 | 2 | cbvexv 1965 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑎 𝑎 ∈ 𝐴) |
| 4 | 1, 3 | sylib 122 | . 2 ⊢ (𝜑 → ∃𝑎 𝑎 ∈ 𝐴) |
| 5 | opeq1 3857 | . . . . . . 7 ⊢ (𝑏 = 𝑐 → 〈𝑏, 1P〉 = 〈𝑐, 1P〉) | |
| 6 | 5 | eceq1d 6716 | . . . . . 6 ⊢ (𝑏 = 𝑐 → [〈𝑏, 1P〉] ~R = [〈𝑐, 1P〉] ~R ) |
| 7 | 6 | oveq2d 6017 | . . . . 5 ⊢ (𝑏 = 𝑐 → (𝑎 +R [〈𝑏, 1P〉] ~R ) = (𝑎 +R [〈𝑐, 1P〉] ~R )) |
| 8 | 7 | eleq1d 2298 | . . . 4 ⊢ (𝑏 = 𝑐 → ((𝑎 +R [〈𝑏, 1P〉] ~R ) ∈ 𝐴 ↔ (𝑎 +R [〈𝑐, 1P〉] ~R ) ∈ 𝐴)) |
| 9 | 8 | cbvrabv 2798 | . . 3 ⊢ {𝑏 ∈ P ∣ (𝑎 +R [〈𝑏, 1P〉] ~R ) ∈ 𝐴} = {𝑐 ∈ P ∣ (𝑎 +R [〈𝑐, 1P〉] ~R ) ∈ 𝐴} |
| 10 | suplocsr.ub | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) | |
| 11 | ltrelsr 7925 | . . . . . . . . . 10 ⊢ <R ⊆ (R × R) | |
| 12 | 11 | brel 4771 | . . . . . . . . 9 ⊢ (𝑦 <R 𝑥 → (𝑦 ∈ R ∧ 𝑥 ∈ R)) |
| 13 | 12 | simpld 112 | . . . . . . . 8 ⊢ (𝑦 <R 𝑥 → 𝑦 ∈ R) |
| 14 | 13 | ralimi 2593 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ∈ R) |
| 15 | dfss3 3213 | . . . . . . 7 ⊢ (𝐴 ⊆ R ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ R) | |
| 16 | 14, 15 | sylibr 134 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → 𝐴 ⊆ R) |
| 17 | 16 | rexlimivw 2644 | . . . . 5 ⊢ (∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → 𝐴 ⊆ R) |
| 18 | 10, 17 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ R) |
| 19 | 18 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐴 ⊆ R) |
| 20 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) | |
| 21 | 10 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) |
| 22 | suplocsr.loc | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) | |
| 23 | 22 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) |
| 24 | 9, 19, 20, 21, 23 | suplocsrlem 7995 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
| 25 | 4, 24 | exlimddv 1945 | 1 ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 {crab 2512 ⊆ wss 3197 〈cop 3669 class class class wbr 4083 (class class class)co 6001 [cec 6678 Pcnp 7478 1Pc1p 7479 ~R cer 7483 Rcnr 7484 +R cplr 7488 <R cltr 7490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-2o 6563 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-enq0 7611 df-nq0 7612 df-0nq0 7613 df-plq0 7614 df-mq0 7615 df-inp 7653 df-i1p 7654 df-iplp 7655 df-imp 7656 df-iltp 7657 df-enr 7913 df-nr 7914 df-plr 7915 df-mr 7916 df-ltr 7917 df-0r 7918 df-1r 7919 df-m1r 7920 |
| This theorem is referenced by: axpre-suploclemres 8088 |
| Copyright terms: Public domain | W3C validator |