ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocsr GIF version

Theorem suplocsr 7996
Description: An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.)
Hypotheses
Ref Expression
suplocsr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocsr.ub (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
suplocsr.loc (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
Assertion
Ref Expression
suplocsr (𝜑 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem suplocsr
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocsr.m . . 3 (𝜑 → ∃𝑥 𝑥𝐴)
2 eleq1w 2290 . . . 4 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
32cbvexv 1965 . . 3 (∃𝑥 𝑥𝐴 ↔ ∃𝑎 𝑎𝐴)
41, 3sylib 122 . 2 (𝜑 → ∃𝑎 𝑎𝐴)
5 opeq1 3857 . . . . . . 7 (𝑏 = 𝑐 → ⟨𝑏, 1P⟩ = ⟨𝑐, 1P⟩)
65eceq1d 6716 . . . . . 6 (𝑏 = 𝑐 → [⟨𝑏, 1P⟩] ~R = [⟨𝑐, 1P⟩] ~R )
76oveq2d 6017 . . . . 5 (𝑏 = 𝑐 → (𝑎 +R [⟨𝑏, 1P⟩] ~R ) = (𝑎 +R [⟨𝑐, 1P⟩] ~R ))
87eleq1d 2298 . . . 4 (𝑏 = 𝑐 → ((𝑎 +R [⟨𝑏, 1P⟩] ~R ) ∈ 𝐴 ↔ (𝑎 +R [⟨𝑐, 1P⟩] ~R ) ∈ 𝐴))
98cbvrabv 2798 . . 3 {𝑏P ∣ (𝑎 +R [⟨𝑏, 1P⟩] ~R ) ∈ 𝐴} = {𝑐P ∣ (𝑎 +R [⟨𝑐, 1P⟩] ~R ) ∈ 𝐴}
10 suplocsr.ub . . . . 5 (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
11 ltrelsr 7925 . . . . . . . . . 10 <R ⊆ (R × R)
1211brel 4771 . . . . . . . . 9 (𝑦 <R 𝑥 → (𝑦R𝑥R))
1312simpld 112 . . . . . . . 8 (𝑦 <R 𝑥𝑦R)
1413ralimi 2593 . . . . . . 7 (∀𝑦𝐴 𝑦 <R 𝑥 → ∀𝑦𝐴 𝑦R)
15 dfss3 3213 . . . . . . 7 (𝐴R ↔ ∀𝑦𝐴 𝑦R)
1614, 15sylibr 134 . . . . . 6 (∀𝑦𝐴 𝑦 <R 𝑥𝐴R)
1716rexlimivw 2644 . . . . 5 (∃𝑥R𝑦𝐴 𝑦 <R 𝑥𝐴R)
1810, 17syl 14 . . . 4 (𝜑𝐴R)
1918adantr 276 . . 3 ((𝜑𝑎𝐴) → 𝐴R)
20 simpr 110 . . 3 ((𝜑𝑎𝐴) → 𝑎𝐴)
2110adantr 276 . . 3 ((𝜑𝑎𝐴) → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
22 suplocsr.loc . . . 4 (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
2322adantr 276 . . 3 ((𝜑𝑎𝐴) → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
249, 19, 20, 21, 23suplocsrlem 7995 . 2 ((𝜑𝑎𝐴) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
254, 24exlimddv 1945 1 (𝜑 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  wex 1538  wcel 2200  wral 2508  wrex 2509  {crab 2512  wss 3197  cop 3669   class class class wbr 4083  (class class class)co 6001  [cec 6678  Pcnp 7478  1Pc1p 7479   ~R cer 7483  Rcnr 7484   +R cplr 7488   <R cltr 7490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-i1p 7654  df-iplp 7655  df-imp 7656  df-iltp 7657  df-enr 7913  df-nr 7914  df-plr 7915  df-mr 7916  df-ltr 7917  df-0r 7918  df-1r 7919  df-m1r 7920
This theorem is referenced by:  axpre-suploclemres  8088
  Copyright terms: Public domain W3C validator