ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocsr GIF version

Theorem suplocsr 7922
Description: An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.)
Hypotheses
Ref Expression
suplocsr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocsr.ub (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
suplocsr.loc (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
Assertion
Ref Expression
suplocsr (𝜑 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem suplocsr
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocsr.m . . 3 (𝜑 → ∃𝑥 𝑥𝐴)
2 eleq1w 2266 . . . 4 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
32cbvexv 1942 . . 3 (∃𝑥 𝑥𝐴 ↔ ∃𝑎 𝑎𝐴)
41, 3sylib 122 . 2 (𝜑 → ∃𝑎 𝑎𝐴)
5 opeq1 3819 . . . . . . 7 (𝑏 = 𝑐 → ⟨𝑏, 1P⟩ = ⟨𝑐, 1P⟩)
65eceq1d 6656 . . . . . 6 (𝑏 = 𝑐 → [⟨𝑏, 1P⟩] ~R = [⟨𝑐, 1P⟩] ~R )
76oveq2d 5960 . . . . 5 (𝑏 = 𝑐 → (𝑎 +R [⟨𝑏, 1P⟩] ~R ) = (𝑎 +R [⟨𝑐, 1P⟩] ~R ))
87eleq1d 2274 . . . 4 (𝑏 = 𝑐 → ((𝑎 +R [⟨𝑏, 1P⟩] ~R ) ∈ 𝐴 ↔ (𝑎 +R [⟨𝑐, 1P⟩] ~R ) ∈ 𝐴))
98cbvrabv 2771 . . 3 {𝑏P ∣ (𝑎 +R [⟨𝑏, 1P⟩] ~R ) ∈ 𝐴} = {𝑐P ∣ (𝑎 +R [⟨𝑐, 1P⟩] ~R ) ∈ 𝐴}
10 suplocsr.ub . . . . 5 (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
11 ltrelsr 7851 . . . . . . . . . 10 <R ⊆ (R × R)
1211brel 4727 . . . . . . . . 9 (𝑦 <R 𝑥 → (𝑦R𝑥R))
1312simpld 112 . . . . . . . 8 (𝑦 <R 𝑥𝑦R)
1413ralimi 2569 . . . . . . 7 (∀𝑦𝐴 𝑦 <R 𝑥 → ∀𝑦𝐴 𝑦R)
15 dfss3 3182 . . . . . . 7 (𝐴R ↔ ∀𝑦𝐴 𝑦R)
1614, 15sylibr 134 . . . . . 6 (∀𝑦𝐴 𝑦 <R 𝑥𝐴R)
1716rexlimivw 2619 . . . . 5 (∃𝑥R𝑦𝐴 𝑦 <R 𝑥𝐴R)
1810, 17syl 14 . . . 4 (𝜑𝐴R)
1918adantr 276 . . 3 ((𝜑𝑎𝐴) → 𝐴R)
20 simpr 110 . . 3 ((𝜑𝑎𝐴) → 𝑎𝐴)
2110adantr 276 . . 3 ((𝜑𝑎𝐴) → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
22 suplocsr.loc . . . 4 (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
2322adantr 276 . . 3 ((𝜑𝑎𝐴) → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
249, 19, 20, 21, 23suplocsrlem 7921 . 2 ((𝜑𝑎𝐴) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
254, 24exlimddv 1922 1 (𝜑 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  wex 1515  wcel 2176  wral 2484  wrex 2485  {crab 2488  wss 3166  cop 3636   class class class wbr 4044  (class class class)co 5944  [cec 6618  Pcnp 7404  1Pc1p 7405   ~R cer 7409  Rcnr 7410   +R cplr 7414   <R cltr 7416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-i1p 7580  df-iplp 7581  df-imp 7582  df-iltp 7583  df-enr 7839  df-nr 7840  df-plr 7841  df-mr 7842  df-ltr 7843  df-0r 7844  df-1r 7845  df-m1r 7846
This theorem is referenced by:  axpre-suploclemres  8014
  Copyright terms: Public domain W3C validator