![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suplocsr | GIF version |
Description: An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.) |
Ref | Expression |
---|---|
suplocsr.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
suplocsr.ub | ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) |
suplocsr.loc | ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) |
Ref | Expression |
---|---|
suplocsr | ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplocsr.m | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
2 | eleq1w 2254 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) | |
3 | 2 | cbvexv 1930 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑎 𝑎 ∈ 𝐴) |
4 | 1, 3 | sylib 122 | . 2 ⊢ (𝜑 → ∃𝑎 𝑎 ∈ 𝐴) |
5 | opeq1 3805 | . . . . . . 7 ⊢ (𝑏 = 𝑐 → 〈𝑏, 1P〉 = 〈𝑐, 1P〉) | |
6 | 5 | eceq1d 6625 | . . . . . 6 ⊢ (𝑏 = 𝑐 → [〈𝑏, 1P〉] ~R = [〈𝑐, 1P〉] ~R ) |
7 | 6 | oveq2d 5935 | . . . . 5 ⊢ (𝑏 = 𝑐 → (𝑎 +R [〈𝑏, 1P〉] ~R ) = (𝑎 +R [〈𝑐, 1P〉] ~R )) |
8 | 7 | eleq1d 2262 | . . . 4 ⊢ (𝑏 = 𝑐 → ((𝑎 +R [〈𝑏, 1P〉] ~R ) ∈ 𝐴 ↔ (𝑎 +R [〈𝑐, 1P〉] ~R ) ∈ 𝐴)) |
9 | 8 | cbvrabv 2759 | . . 3 ⊢ {𝑏 ∈ P ∣ (𝑎 +R [〈𝑏, 1P〉] ~R ) ∈ 𝐴} = {𝑐 ∈ P ∣ (𝑎 +R [〈𝑐, 1P〉] ~R ) ∈ 𝐴} |
10 | suplocsr.ub | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) | |
11 | ltrelsr 7800 | . . . . . . . . . 10 ⊢ <R ⊆ (R × R) | |
12 | 11 | brel 4712 | . . . . . . . . 9 ⊢ (𝑦 <R 𝑥 → (𝑦 ∈ R ∧ 𝑥 ∈ R)) |
13 | 12 | simpld 112 | . . . . . . . 8 ⊢ (𝑦 <R 𝑥 → 𝑦 ∈ R) |
14 | 13 | ralimi 2557 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ∈ R) |
15 | dfss3 3170 | . . . . . . 7 ⊢ (𝐴 ⊆ R ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ R) | |
16 | 14, 15 | sylibr 134 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → 𝐴 ⊆ R) |
17 | 16 | rexlimivw 2607 | . . . . 5 ⊢ (∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → 𝐴 ⊆ R) |
18 | 10, 17 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ R) |
19 | 18 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐴 ⊆ R) |
20 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) | |
21 | 10 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) |
22 | suplocsr.loc | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) | |
23 | 22 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) |
24 | 9, 19, 20, 21, 23 | suplocsrlem 7870 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
25 | 4, 24 | exlimddv 1910 | 1 ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 {crab 2476 ⊆ wss 3154 〈cop 3622 class class class wbr 4030 (class class class)co 5919 [cec 6587 Pcnp 7353 1Pc1p 7354 ~R cer 7358 Rcnr 7359 +R cplr 7363 <R cltr 7365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-1o 6471 df-2o 6472 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-pli 7367 df-mi 7368 df-lti 7369 df-plpq 7406 df-mpq 7407 df-enq 7409 df-nqqs 7410 df-plqqs 7411 df-mqqs 7412 df-1nqqs 7413 df-rq 7414 df-ltnqqs 7415 df-enq0 7486 df-nq0 7487 df-0nq0 7488 df-plq0 7489 df-mq0 7490 df-inp 7528 df-i1p 7529 df-iplp 7530 df-imp 7531 df-iltp 7532 df-enr 7788 df-nr 7789 df-plr 7790 df-mr 7791 df-ltr 7792 df-0r 7793 df-1r 7794 df-m1r 7795 |
This theorem is referenced by: axpre-suploclemres 7963 |
Copyright terms: Public domain | W3C validator |