ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocsr GIF version

Theorem suplocsr 7750
Description: An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.)
Hypotheses
Ref Expression
suplocsr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocsr.ub (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
suplocsr.loc (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
Assertion
Ref Expression
suplocsr (𝜑 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem suplocsr
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocsr.m . . 3 (𝜑 → ∃𝑥 𝑥𝐴)
2 eleq1w 2227 . . . 4 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
32cbvexv 1906 . . 3 (∃𝑥 𝑥𝐴 ↔ ∃𝑎 𝑎𝐴)
41, 3sylib 121 . 2 (𝜑 → ∃𝑎 𝑎𝐴)
5 opeq1 3758 . . . . . . 7 (𝑏 = 𝑐 → ⟨𝑏, 1P⟩ = ⟨𝑐, 1P⟩)
65eceq1d 6537 . . . . . 6 (𝑏 = 𝑐 → [⟨𝑏, 1P⟩] ~R = [⟨𝑐, 1P⟩] ~R )
76oveq2d 5858 . . . . 5 (𝑏 = 𝑐 → (𝑎 +R [⟨𝑏, 1P⟩] ~R ) = (𝑎 +R [⟨𝑐, 1P⟩] ~R ))
87eleq1d 2235 . . . 4 (𝑏 = 𝑐 → ((𝑎 +R [⟨𝑏, 1P⟩] ~R ) ∈ 𝐴 ↔ (𝑎 +R [⟨𝑐, 1P⟩] ~R ) ∈ 𝐴))
98cbvrabv 2725 . . 3 {𝑏P ∣ (𝑎 +R [⟨𝑏, 1P⟩] ~R ) ∈ 𝐴} = {𝑐P ∣ (𝑎 +R [⟨𝑐, 1P⟩] ~R ) ∈ 𝐴}
10 suplocsr.ub . . . . 5 (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
11 ltrelsr 7679 . . . . . . . . . 10 <R ⊆ (R × R)
1211brel 4656 . . . . . . . . 9 (𝑦 <R 𝑥 → (𝑦R𝑥R))
1312simpld 111 . . . . . . . 8 (𝑦 <R 𝑥𝑦R)
1413ralimi 2529 . . . . . . 7 (∀𝑦𝐴 𝑦 <R 𝑥 → ∀𝑦𝐴 𝑦R)
15 dfss3 3132 . . . . . . 7 (𝐴R ↔ ∀𝑦𝐴 𝑦R)
1614, 15sylibr 133 . . . . . 6 (∀𝑦𝐴 𝑦 <R 𝑥𝐴R)
1716rexlimivw 2579 . . . . 5 (∃𝑥R𝑦𝐴 𝑦 <R 𝑥𝐴R)
1810, 17syl 14 . . . 4 (𝜑𝐴R)
1918adantr 274 . . 3 ((𝜑𝑎𝐴) → 𝐴R)
20 simpr 109 . . 3 ((𝜑𝑎𝐴) → 𝑎𝐴)
2110adantr 274 . . 3 ((𝜑𝑎𝐴) → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
22 suplocsr.loc . . . 4 (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
2322adantr 274 . . 3 ((𝜑𝑎𝐴) → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
249, 19, 20, 21, 23suplocsrlem 7749 . 2 ((𝜑𝑎𝐴) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
254, 24exlimddv 1886 1 (𝜑 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  wex 1480  wcel 2136  wral 2444  wrex 2445  {crab 2448  wss 3116  cop 3579   class class class wbr 3982  (class class class)co 5842  [cec 6499  Pcnp 7232  1Pc1p 7233   ~R cer 7237  Rcnr 7238   +R cplr 7242   <R cltr 7244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-iltp 7411  df-enr 7667  df-nr 7668  df-plr 7669  df-mr 7670  df-ltr 7671  df-0r 7672  df-1r 7673  df-m1r 7674
This theorem is referenced by:  axpre-suploclemres  7842
  Copyright terms: Public domain W3C validator