| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocsr | GIF version | ||
| Description: An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocsr.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| suplocsr.ub | ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) |
| suplocsr.loc | ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) |
| Ref | Expression |
|---|---|
| suplocsr | ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplocsr.m | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | eleq1w 2268 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) | |
| 3 | 2 | cbvexv 1943 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑎 𝑎 ∈ 𝐴) |
| 4 | 1, 3 | sylib 122 | . 2 ⊢ (𝜑 → ∃𝑎 𝑎 ∈ 𝐴) |
| 5 | opeq1 3833 | . . . . . . 7 ⊢ (𝑏 = 𝑐 → 〈𝑏, 1P〉 = 〈𝑐, 1P〉) | |
| 6 | 5 | eceq1d 6679 | . . . . . 6 ⊢ (𝑏 = 𝑐 → [〈𝑏, 1P〉] ~R = [〈𝑐, 1P〉] ~R ) |
| 7 | 6 | oveq2d 5983 | . . . . 5 ⊢ (𝑏 = 𝑐 → (𝑎 +R [〈𝑏, 1P〉] ~R ) = (𝑎 +R [〈𝑐, 1P〉] ~R )) |
| 8 | 7 | eleq1d 2276 | . . . 4 ⊢ (𝑏 = 𝑐 → ((𝑎 +R [〈𝑏, 1P〉] ~R ) ∈ 𝐴 ↔ (𝑎 +R [〈𝑐, 1P〉] ~R ) ∈ 𝐴)) |
| 9 | 8 | cbvrabv 2775 | . . 3 ⊢ {𝑏 ∈ P ∣ (𝑎 +R [〈𝑏, 1P〉] ~R ) ∈ 𝐴} = {𝑐 ∈ P ∣ (𝑎 +R [〈𝑐, 1P〉] ~R ) ∈ 𝐴} |
| 10 | suplocsr.ub | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) | |
| 11 | ltrelsr 7886 | . . . . . . . . . 10 ⊢ <R ⊆ (R × R) | |
| 12 | 11 | brel 4745 | . . . . . . . . 9 ⊢ (𝑦 <R 𝑥 → (𝑦 ∈ R ∧ 𝑥 ∈ R)) |
| 13 | 12 | simpld 112 | . . . . . . . 8 ⊢ (𝑦 <R 𝑥 → 𝑦 ∈ R) |
| 14 | 13 | ralimi 2571 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ∈ R) |
| 15 | dfss3 3190 | . . . . . . 7 ⊢ (𝐴 ⊆ R ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ R) | |
| 16 | 14, 15 | sylibr 134 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → 𝐴 ⊆ R) |
| 17 | 16 | rexlimivw 2621 | . . . . 5 ⊢ (∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → 𝐴 ⊆ R) |
| 18 | 10, 17 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ R) |
| 19 | 18 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐴 ⊆ R) |
| 20 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) | |
| 21 | 10 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) |
| 22 | suplocsr.loc | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) | |
| 23 | 22 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) |
| 24 | 9, 19, 20, 21, 23 | suplocsrlem 7956 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
| 25 | 4, 24 | exlimddv 1923 | 1 ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 ∃wex 1516 ∈ wcel 2178 ∀wral 2486 ∃wrex 2487 {crab 2490 ⊆ wss 3174 〈cop 3646 class class class wbr 4059 (class class class)co 5967 [cec 6641 Pcnp 7439 1Pc1p 7440 ~R cer 7444 Rcnr 7445 +R cplr 7449 <R cltr 7451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-i1p 7615 df-iplp 7616 df-imp 7617 df-iltp 7618 df-enr 7874 df-nr 7875 df-plr 7876 df-mr 7877 df-ltr 7878 df-0r 7879 df-1r 7880 df-m1r 7881 |
| This theorem is referenced by: axpre-suploclemres 8049 |
| Copyright terms: Public domain | W3C validator |