| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocsr | GIF version | ||
| Description: An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocsr.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| suplocsr.ub | ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) |
| suplocsr.loc | ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) |
| Ref | Expression |
|---|---|
| suplocsr | ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplocsr.m | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | eleq1w 2266 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) | |
| 3 | 2 | cbvexv 1942 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑎 𝑎 ∈ 𝐴) |
| 4 | 1, 3 | sylib 122 | . 2 ⊢ (𝜑 → ∃𝑎 𝑎 ∈ 𝐴) |
| 5 | opeq1 3819 | . . . . . . 7 ⊢ (𝑏 = 𝑐 → 〈𝑏, 1P〉 = 〈𝑐, 1P〉) | |
| 6 | 5 | eceq1d 6656 | . . . . . 6 ⊢ (𝑏 = 𝑐 → [〈𝑏, 1P〉] ~R = [〈𝑐, 1P〉] ~R ) |
| 7 | 6 | oveq2d 5960 | . . . . 5 ⊢ (𝑏 = 𝑐 → (𝑎 +R [〈𝑏, 1P〉] ~R ) = (𝑎 +R [〈𝑐, 1P〉] ~R )) |
| 8 | 7 | eleq1d 2274 | . . . 4 ⊢ (𝑏 = 𝑐 → ((𝑎 +R [〈𝑏, 1P〉] ~R ) ∈ 𝐴 ↔ (𝑎 +R [〈𝑐, 1P〉] ~R ) ∈ 𝐴)) |
| 9 | 8 | cbvrabv 2771 | . . 3 ⊢ {𝑏 ∈ P ∣ (𝑎 +R [〈𝑏, 1P〉] ~R ) ∈ 𝐴} = {𝑐 ∈ P ∣ (𝑎 +R [〈𝑐, 1P〉] ~R ) ∈ 𝐴} |
| 10 | suplocsr.ub | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) | |
| 11 | ltrelsr 7851 | . . . . . . . . . 10 ⊢ <R ⊆ (R × R) | |
| 12 | 11 | brel 4727 | . . . . . . . . 9 ⊢ (𝑦 <R 𝑥 → (𝑦 ∈ R ∧ 𝑥 ∈ R)) |
| 13 | 12 | simpld 112 | . . . . . . . 8 ⊢ (𝑦 <R 𝑥 → 𝑦 ∈ R) |
| 14 | 13 | ralimi 2569 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ∈ R) |
| 15 | dfss3 3182 | . . . . . . 7 ⊢ (𝐴 ⊆ R ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ R) | |
| 16 | 14, 15 | sylibr 134 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → 𝐴 ⊆ R) |
| 17 | 16 | rexlimivw 2619 | . . . . 5 ⊢ (∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → 𝐴 ⊆ R) |
| 18 | 10, 17 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ R) |
| 19 | 18 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐴 ⊆ R) |
| 20 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) | |
| 21 | 10 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) |
| 22 | suplocsr.loc | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) | |
| 23 | 22 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) |
| 24 | 9, 19, 20, 21, 23 | suplocsrlem 7921 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
| 25 | 4, 24 | exlimddv 1922 | 1 ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 ∃wex 1515 ∈ wcel 2176 ∀wral 2484 ∃wrex 2485 {crab 2488 ⊆ wss 3166 〈cop 3636 class class class wbr 4044 (class class class)co 5944 [cec 6618 Pcnp 7404 1Pc1p 7405 ~R cer 7409 Rcnr 7410 +R cplr 7414 <R cltr 7416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-eprel 4336 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-1o 6502 df-2o 6503 df-oadd 6506 df-omul 6507 df-er 6620 df-ec 6622 df-qs 6626 df-ni 7417 df-pli 7418 df-mi 7419 df-lti 7420 df-plpq 7457 df-mpq 7458 df-enq 7460 df-nqqs 7461 df-plqqs 7462 df-mqqs 7463 df-1nqqs 7464 df-rq 7465 df-ltnqqs 7466 df-enq0 7537 df-nq0 7538 df-0nq0 7539 df-plq0 7540 df-mq0 7541 df-inp 7579 df-i1p 7580 df-iplp 7581 df-imp 7582 df-iltp 7583 df-enr 7839 df-nr 7840 df-plr 7841 df-mr 7842 df-ltr 7843 df-0r 7844 df-1r 7845 df-m1r 7846 |
| This theorem is referenced by: axpre-suploclemres 8014 |
| Copyright terms: Public domain | W3C validator |