Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suplocsr | GIF version |
Description: An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.) |
Ref | Expression |
---|---|
suplocsr.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
suplocsr.ub | ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) |
suplocsr.loc | ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) |
Ref | Expression |
---|---|
suplocsr | ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplocsr.m | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
2 | eleq1w 2231 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) | |
3 | 2 | cbvexv 1911 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑎 𝑎 ∈ 𝐴) |
4 | 1, 3 | sylib 121 | . 2 ⊢ (𝜑 → ∃𝑎 𝑎 ∈ 𝐴) |
5 | opeq1 3765 | . . . . . . 7 ⊢ (𝑏 = 𝑐 → 〈𝑏, 1P〉 = 〈𝑐, 1P〉) | |
6 | 5 | eceq1d 6549 | . . . . . 6 ⊢ (𝑏 = 𝑐 → [〈𝑏, 1P〉] ~R = [〈𝑐, 1P〉] ~R ) |
7 | 6 | oveq2d 5869 | . . . . 5 ⊢ (𝑏 = 𝑐 → (𝑎 +R [〈𝑏, 1P〉] ~R ) = (𝑎 +R [〈𝑐, 1P〉] ~R )) |
8 | 7 | eleq1d 2239 | . . . 4 ⊢ (𝑏 = 𝑐 → ((𝑎 +R [〈𝑏, 1P〉] ~R ) ∈ 𝐴 ↔ (𝑎 +R [〈𝑐, 1P〉] ~R ) ∈ 𝐴)) |
9 | 8 | cbvrabv 2729 | . . 3 ⊢ {𝑏 ∈ P ∣ (𝑎 +R [〈𝑏, 1P〉] ~R ) ∈ 𝐴} = {𝑐 ∈ P ∣ (𝑎 +R [〈𝑐, 1P〉] ~R ) ∈ 𝐴} |
10 | suplocsr.ub | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) | |
11 | ltrelsr 7700 | . . . . . . . . . 10 ⊢ <R ⊆ (R × R) | |
12 | 11 | brel 4663 | . . . . . . . . 9 ⊢ (𝑦 <R 𝑥 → (𝑦 ∈ R ∧ 𝑥 ∈ R)) |
13 | 12 | simpld 111 | . . . . . . . 8 ⊢ (𝑦 <R 𝑥 → 𝑦 ∈ R) |
14 | 13 | ralimi 2533 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ∈ R) |
15 | dfss3 3137 | . . . . . . 7 ⊢ (𝐴 ⊆ R ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ R) | |
16 | 14, 15 | sylibr 133 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → 𝐴 ⊆ R) |
17 | 16 | rexlimivw 2583 | . . . . 5 ⊢ (∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → 𝐴 ⊆ R) |
18 | 10, 17 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ R) |
19 | 18 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐴 ⊆ R) |
20 | simpr 109 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) | |
21 | 10 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) |
22 | suplocsr.loc | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) | |
23 | 22 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) |
24 | 9, 19, 20, 21, 23 | suplocsrlem 7770 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
25 | 4, 24 | exlimddv 1891 | 1 ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 703 ∃wex 1485 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 {crab 2452 ⊆ wss 3121 〈cop 3586 class class class wbr 3989 (class class class)co 5853 [cec 6511 Pcnp 7253 1Pc1p 7254 ~R cer 7258 Rcnr 7259 +R cplr 7263 <R cltr 7265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-i1p 7429 df-iplp 7430 df-imp 7431 df-iltp 7432 df-enr 7688 df-nr 7689 df-plr 7690 df-mr 7691 df-ltr 7692 df-0r 7693 df-1r 7694 df-m1r 7695 |
This theorem is referenced by: axpre-suploclemres 7863 |
Copyright terms: Public domain | W3C validator |