Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imai | GIF version |
Description: Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.) |
Ref | Expression |
---|---|
imai | ⊢ ( I “ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfima3 4949 | . 2 ⊢ ( I “ 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I )} | |
2 | df-br 3983 | . . . . . . . 8 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
3 | vex 2729 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
4 | 3 | ideq 4756 | . . . . . . . 8 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
5 | 2, 4 | bitr3i 185 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ I ↔ 𝑥 = 𝑦) |
6 | 5 | anbi2i 453 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑦)) |
7 | ancom 264 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑦) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) | |
8 | 6, 7 | bitri 183 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
9 | 8 | exbii 1593 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
10 | eleq1 2229 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
11 | 3, 10 | ceqsexv 2765 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) ↔ 𝑦 ∈ 𝐴) |
12 | 9, 11 | bitri 183 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ 𝑦 ∈ 𝐴) |
13 | 12 | abbii 2282 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I )} = {𝑦 ∣ 𝑦 ∈ 𝐴} |
14 | abid2 2287 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
15 | 1, 13, 14 | 3eqtri 2190 | 1 ⊢ ( I “ 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∃wex 1480 ∈ wcel 2136 {cab 2151 〈cop 3579 class class class wbr 3982 I cid 4266 “ cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: rnresi 4961 cnvresid 5262 ecidsn 6548 |
Copyright terms: Public domain | W3C validator |