![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imai | GIF version |
Description: Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.) |
Ref | Expression |
---|---|
imai | ⊢ ( I “ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfima3 4820 | . 2 ⊢ ( I “ 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I )} | |
2 | df-br 3876 | . . . . . . . 8 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
3 | vex 2644 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
4 | 3 | ideq 4629 | . . . . . . . 8 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
5 | 2, 4 | bitr3i 185 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ I ↔ 𝑥 = 𝑦) |
6 | 5 | anbi2i 448 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑦)) |
7 | ancom 264 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑦) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) | |
8 | 6, 7 | bitri 183 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
9 | 8 | exbii 1552 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
10 | eleq1 2162 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
11 | 3, 10 | ceqsexv 2680 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) ↔ 𝑦 ∈ 𝐴) |
12 | 9, 11 | bitri 183 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ 𝑦 ∈ 𝐴) |
13 | 12 | abbii 2215 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I )} = {𝑦 ∣ 𝑦 ∈ 𝐴} |
14 | abid2 2220 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
15 | 1, 13, 14 | 3eqtri 2124 | 1 ⊢ ( I “ 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1299 ∃wex 1436 ∈ wcel 1448 {cab 2086 〈cop 3477 class class class wbr 3875 I cid 4148 “ cima 4480 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-br 3876 df-opab 3930 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 |
This theorem is referenced by: rnresi 4832 cnvresid 5133 ecidsn 6406 |
Copyright terms: Public domain | W3C validator |