| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imai | GIF version | ||
| Description: Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.) |
| Ref | Expression |
|---|---|
| imai | ⊢ ( I “ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfima3 5031 | . 2 ⊢ ( I “ 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I )} | |
| 2 | df-br 4049 | . . . . . . . 8 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
| 3 | vex 2776 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 4 | 3 | ideq 4835 | . . . . . . . 8 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 5 | 2, 4 | bitr3i 186 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ I ↔ 𝑥 = 𝑦) |
| 6 | 5 | anbi2i 457 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑦)) |
| 7 | ancom 266 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑦) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) | |
| 8 | 6, 7 | bitri 184 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
| 9 | 8 | exbii 1629 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
| 10 | eleq1 2269 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 11 | 3, 10 | ceqsexv 2813 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) ↔ 𝑦 ∈ 𝐴) |
| 12 | 9, 11 | bitri 184 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I ) ↔ 𝑦 ∈ 𝐴) |
| 13 | 12 | abbii 2322 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ I )} = {𝑦 ∣ 𝑦 ∈ 𝐴} |
| 14 | abid2 2327 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
| 15 | 1, 13, 14 | 3eqtri 2231 | 1 ⊢ ( I “ 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 {cab 2192 〈cop 3638 class class class wbr 4048 I cid 4340 “ cima 4683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 |
| This theorem is referenced by: rnresi 5045 cnvresid 5354 ecidsn 6679 |
| Copyright terms: Public domain | W3C validator |