ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imai GIF version

Theorem imai 5022
Description: Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
imai ( I “ 𝐴) = 𝐴

Proof of Theorem imai
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfima3 5009 . 2 ( I “ 𝐴) = {𝑦 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I )}
2 df-br 4031 . . . . . . . 8 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
3 vex 2763 . . . . . . . . 9 𝑦 ∈ V
43ideq 4815 . . . . . . . 8 (𝑥 I 𝑦𝑥 = 𝑦)
52, 4bitr3i 186 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
65anbi2i 457 . . . . . 6 ((𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝑥𝐴𝑥 = 𝑦))
7 ancom 266 . . . . . 6 ((𝑥𝐴𝑥 = 𝑦) ↔ (𝑥 = 𝑦𝑥𝐴))
86, 7bitri 184 . . . . 5 ((𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝑥 = 𝑦𝑥𝐴))
98exbii 1616 . . . 4 (∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ∃𝑥(𝑥 = 𝑦𝑥𝐴))
10 eleq1 2256 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
113, 10ceqsexv 2799 . . . 4 (∃𝑥(𝑥 = 𝑦𝑥𝐴) ↔ 𝑦𝐴)
129, 11bitri 184 . . 3 (∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ 𝑦𝐴)
1312abbii 2309 . 2 {𝑦 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I )} = {𝑦𝑦𝐴}
14 abid2 2314 . 2 {𝑦𝑦𝐴} = 𝐴
151, 13, 143eqtri 2218 1 ( I “ 𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1503  wcel 2164  {cab 2179  cop 3622   class class class wbr 4030   I cid 4320  cima 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673
This theorem is referenced by:  rnresi  5023  cnvresid  5329  ecidsn  6638
  Copyright terms: Public domain W3C validator