![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > coi1 | GIF version |
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
coi1 | ⊢ (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 5164 | . 2 ⊢ Rel (𝐴 ∘ I ) | |
2 | vex 2763 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 2763 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opelco 4834 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ I ) ↔ ∃𝑧(𝑥 I 𝑧 ∧ 𝑧𝐴𝑦)) |
5 | vex 2763 | . . . . . . . . . 10 ⊢ 𝑧 ∈ V | |
6 | 5 | ideq 4814 | . . . . . . . . 9 ⊢ (𝑥 I 𝑧 ↔ 𝑥 = 𝑧) |
7 | equcom 1717 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 ↔ 𝑧 = 𝑥) | |
8 | 6, 7 | bitri 184 | . . . . . . . 8 ⊢ (𝑥 I 𝑧 ↔ 𝑧 = 𝑥) |
9 | 8 | anbi1i 458 | . . . . . . 7 ⊢ ((𝑥 I 𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑧 = 𝑥 ∧ 𝑧𝐴𝑦)) |
10 | 9 | exbii 1616 | . . . . . 6 ⊢ (∃𝑧(𝑥 I 𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧𝐴𝑦)) |
11 | breq1 4032 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑧𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
12 | 2, 11 | ceqsexv 2799 | . . . . . 6 ⊢ (∃𝑧(𝑧 = 𝑥 ∧ 𝑧𝐴𝑦) ↔ 𝑥𝐴𝑦) |
13 | 10, 12 | bitri 184 | . . . . 5 ⊢ (∃𝑧(𝑥 I 𝑧 ∧ 𝑧𝐴𝑦) ↔ 𝑥𝐴𝑦) |
14 | 4, 13 | bitri 184 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ I ) ↔ 𝑥𝐴𝑦) |
15 | df-br 4030 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
16 | 14, 15 | bitri 184 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ I ) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
17 | 16 | eqrelriv 4752 | . 2 ⊢ ((Rel (𝐴 ∘ I ) ∧ Rel 𝐴) → (𝐴 ∘ I ) = 𝐴) |
18 | 1, 17 | mpan 424 | 1 ⊢ (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 〈cop 3621 class class class wbr 4029 I cid 4319 ∘ ccom 4663 Rel wrel 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-co 4668 |
This theorem is referenced by: coi2 5182 coires1 5183 relcoi1 5197 fcoi1 5434 |
Copyright terms: Public domain | W3C validator |