ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coi1 GIF version

Theorem coi1 5185
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi1 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)

Proof of Theorem coi1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5168 . 2 Rel (𝐴 ∘ I )
2 vex 2766 . . . . . 6 𝑥 ∈ V
3 vex 2766 . . . . . 6 𝑦 ∈ V
42, 3opelco 4838 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ I ) ↔ ∃𝑧(𝑥 I 𝑧𝑧𝐴𝑦))
5 vex 2766 . . . . . . . . . 10 𝑧 ∈ V
65ideq 4818 . . . . . . . . 9 (𝑥 I 𝑧𝑥 = 𝑧)
7 equcom 1720 . . . . . . . . 9 (𝑥 = 𝑧𝑧 = 𝑥)
86, 7bitri 184 . . . . . . . 8 (𝑥 I 𝑧𝑧 = 𝑥)
98anbi1i 458 . . . . . . 7 ((𝑥 I 𝑧𝑧𝐴𝑦) ↔ (𝑧 = 𝑥𝑧𝐴𝑦))
109exbii 1619 . . . . . 6 (∃𝑧(𝑥 I 𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑧 = 𝑥𝑧𝐴𝑦))
11 breq1 4036 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝐴𝑦𝑥𝐴𝑦))
122, 11ceqsexv 2802 . . . . . 6 (∃𝑧(𝑧 = 𝑥𝑧𝐴𝑦) ↔ 𝑥𝐴𝑦)
1310, 12bitri 184 . . . . 5 (∃𝑧(𝑥 I 𝑧𝑧𝐴𝑦) ↔ 𝑥𝐴𝑦)
144, 13bitri 184 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ I ) ↔ 𝑥𝐴𝑦)
15 df-br 4034 . . . 4 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
1614, 15bitri 184 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ I ) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
1716eqrelriv 4756 . 2 ((Rel (𝐴 ∘ I ) ∧ Rel 𝐴) → (𝐴 ∘ I ) = 𝐴)
181, 17mpan 424 1 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  cop 3625   class class class wbr 4033   I cid 4323  ccom 4667  Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-co 4672
This theorem is referenced by:  coi2  5186  coires1  5187  relcoi1  5201  fcoi1  5438
  Copyright terms: Public domain W3C validator