Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > coi1 | GIF version |
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
coi1 | ⊢ (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 5081 | . 2 ⊢ Rel (𝐴 ∘ I ) | |
2 | vex 2715 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 2715 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opelco 4755 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ I ) ↔ ∃𝑧(𝑥 I 𝑧 ∧ 𝑧𝐴𝑦)) |
5 | vex 2715 | . . . . . . . . . 10 ⊢ 𝑧 ∈ V | |
6 | 5 | ideq 4735 | . . . . . . . . 9 ⊢ (𝑥 I 𝑧 ↔ 𝑥 = 𝑧) |
7 | equcom 1686 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 ↔ 𝑧 = 𝑥) | |
8 | 6, 7 | bitri 183 | . . . . . . . 8 ⊢ (𝑥 I 𝑧 ↔ 𝑧 = 𝑥) |
9 | 8 | anbi1i 454 | . . . . . . 7 ⊢ ((𝑥 I 𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑧 = 𝑥 ∧ 𝑧𝐴𝑦)) |
10 | 9 | exbii 1585 | . . . . . 6 ⊢ (∃𝑧(𝑥 I 𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧𝐴𝑦)) |
11 | breq1 3968 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑧𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
12 | 2, 11 | ceqsexv 2751 | . . . . . 6 ⊢ (∃𝑧(𝑧 = 𝑥 ∧ 𝑧𝐴𝑦) ↔ 𝑥𝐴𝑦) |
13 | 10, 12 | bitri 183 | . . . . 5 ⊢ (∃𝑧(𝑥 I 𝑧 ∧ 𝑧𝐴𝑦) ↔ 𝑥𝐴𝑦) |
14 | 4, 13 | bitri 183 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ I ) ↔ 𝑥𝐴𝑦) |
15 | df-br 3966 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
16 | 14, 15 | bitri 183 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ I ) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
17 | 16 | eqrelriv 4676 | . 2 ⊢ ((Rel (𝐴 ∘ I ) ∧ Rel 𝐴) → (𝐴 ∘ I ) = 𝐴) |
18 | 1, 17 | mpan 421 | 1 ⊢ (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∃wex 1472 ∈ wcel 2128 〈cop 3563 class class class wbr 3965 I cid 4247 ∘ ccom 4587 Rel wrel 4588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-co 4592 |
This theorem is referenced by: coi2 5099 coires1 5100 relcoi1 5114 fcoi1 5347 |
Copyright terms: Public domain | W3C validator |