![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > coi1 | GIF version |
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
coi1 | ⊢ (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 4929 | . 2 ⊢ Rel (𝐴 ∘ I ) | |
2 | vex 2622 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 2622 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opelco 4608 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ I ) ↔ ∃𝑧(𝑥 I 𝑧 ∧ 𝑧𝐴𝑦)) |
5 | vex 2622 | . . . . . . . . . 10 ⊢ 𝑧 ∈ V | |
6 | 5 | ideq 4588 | . . . . . . . . 9 ⊢ (𝑥 I 𝑧 ↔ 𝑥 = 𝑧) |
7 | equcom 1639 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 ↔ 𝑧 = 𝑥) | |
8 | 6, 7 | bitri 182 | . . . . . . . 8 ⊢ (𝑥 I 𝑧 ↔ 𝑧 = 𝑥) |
9 | 8 | anbi1i 446 | . . . . . . 7 ⊢ ((𝑥 I 𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑧 = 𝑥 ∧ 𝑧𝐴𝑦)) |
10 | 9 | exbii 1541 | . . . . . 6 ⊢ (∃𝑧(𝑥 I 𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧𝐴𝑦)) |
11 | breq1 3848 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑧𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
12 | 2, 11 | ceqsexv 2658 | . . . . . 6 ⊢ (∃𝑧(𝑧 = 𝑥 ∧ 𝑧𝐴𝑦) ↔ 𝑥𝐴𝑦) |
13 | 10, 12 | bitri 182 | . . . . 5 ⊢ (∃𝑧(𝑥 I 𝑧 ∧ 𝑧𝐴𝑦) ↔ 𝑥𝐴𝑦) |
14 | 4, 13 | bitri 182 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ I ) ↔ 𝑥𝐴𝑦) |
15 | df-br 3846 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
16 | 14, 15 | bitri 182 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ I ) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
17 | 16 | eqrelriv 4531 | . 2 ⊢ ((Rel (𝐴 ∘ I ) ∧ Rel 𝐴) → (𝐴 ∘ I ) = 𝐴) |
18 | 1, 17 | mpan 415 | 1 ⊢ (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 ∃wex 1426 ∈ wcel 1438 〈cop 3449 class class class wbr 3845 I cid 4115 ∘ ccom 4442 Rel wrel 4443 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-br 3846 df-opab 3900 df-id 4120 df-xp 4444 df-rel 4445 df-co 4447 |
This theorem is referenced by: coi2 4947 coires1 4948 relcoi1 4962 fcoi1 5191 |
Copyright terms: Public domain | W3C validator |