ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmn4 GIF version

Theorem cmn4 13435
Description: Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablcom.b 𝐵 = (Base‘𝐺)
ablcom.p + = (+g𝐺)
Assertion
Ref Expression
cmn4 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))

Proof of Theorem cmn4
StepHypRef Expression
1 ablcom.b . 2 𝐵 = (Base‘𝐺)
2 ablcom.p . 2 + = (+g𝐺)
3 simp1 999 . . 3 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ CMnd)
4 cmnmnd 13431 . . 3 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
53, 4syl 14 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ Mnd)
6 simp2l 1025 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
7 simp2r 1026 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
8 simp3l 1027 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
9 simp3r 1028 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
101, 2cmncom 13432 . . 3 ((𝐺 ∈ CMnd ∧ 𝑌𝐵𝑍𝐵) → (𝑌 + 𝑍) = (𝑍 + 𝑌))
113, 7, 8, 10syl3anc 1249 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 + 𝑍) = (𝑍 + 𝑌))
121, 2, 5, 6, 7, 8, 9, 11mnd4g 13070 1 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  Mndcmnd 13057  CMndccmn 13414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-cmn 13416
This theorem is referenced by:  ablsub4  13443  lmod4  13893
  Copyright terms: Public domain W3C validator