HomeHome Intuitionistic Logic Explorer
Theorem List (p. 51 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5001-5100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxpidtr 5001 A square cross product (𝐴 × 𝐴) is a transitive relation. (Contributed by FL, 31-Jul-2009.)
((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
 
Theoremtrin2 5002 The intersection of two transitive classes is transitive. (Contributed by FL, 31-Jul-2009.)
(((𝑅𝑅) ⊆ 𝑅 ∧ (𝑆𝑆) ⊆ 𝑆) → ((𝑅𝑆) ∘ (𝑅𝑆)) ⊆ (𝑅𝑆))
 
Theorempoirr2 5003 A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.)
(𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅)
 
Theoremtrinxp 5004 The relation induced by a transitive relation on a part of its field is transitive. (Taking the intersection of a relation with a square cross product is a way to restrict it to a subset of its field.) (Contributed by FL, 31-Jul-2009.)
((𝑅𝑅) ⊆ 𝑅 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)))
 
Theoremsoirri 5005 A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
𝑅 Or 𝑆    &   𝑅 ⊆ (𝑆 × 𝑆)        ¬ 𝐴𝑅𝐴
 
Theoremsotri 5006 A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
𝑅 Or 𝑆    &   𝑅 ⊆ (𝑆 × 𝑆)       ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
 
Theoremson2lpi 5007 A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
𝑅 Or 𝑆    &   𝑅 ⊆ (𝑆 × 𝑆)        ¬ (𝐴𝑅𝐵𝐵𝑅𝐴)
 
Theoremsotri2 5008 A transitivity relation. (Read ¬ B < A and B < C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.)
𝑅 Or 𝑆    &   𝑅 ⊆ (𝑆 × 𝑆)       ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → 𝐴𝑅𝐶)
 
Theoremsotri3 5009 A transitivity relation. (Read A < B and ¬ C < B implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.)
𝑅 Or 𝑆    &   𝑅 ⊆ (𝑆 × 𝑆)       ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶)
 
Theorempoleloe 5010 Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
(𝐵𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))
 
Theorempoltletr 5011 Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶))
 
Theoremcnvopab 5012* The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
{⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
 
Theoremmptcnv 5013* The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.)
(𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑦𝐶𝑥 = 𝐷)))       (𝜑(𝑥𝐴𝐵) = (𝑦𝐶𝐷))
 
Theoremcnv0 5014 The converse of the empty set. (Contributed by NM, 6-Apr-1998.)
∅ = ∅
 
Theoremcnvi 5015 The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
I = I
 
Theoremcnvun 5016 The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴𝐵) = (𝐴𝐵)
 
Theoremcnvdif 5017 Distributive law for converse over set difference. (Contributed by Mario Carneiro, 26-Jun-2014.)
(𝐴𝐵) = (𝐴𝐵)
 
Theoremcnvin 5018 Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.)
(𝐴𝐵) = (𝐴𝐵)
 
Theoremrnun 5019 Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)
 
Theoremrnin 5020 The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
ran (𝐴𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵)
 
Theoremrniun 5021 The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵
 
Theoremrnuni 5022* The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.)
ran 𝐴 = 𝑥𝐴 ran 𝑥
 
Theoremimaundi 5023 Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
(𝐴 “ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
 
Theoremimaundir 5024 The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008.)
((𝐴𝐵) “ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
 
Theoremdminss 5025 An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising". (Contributed by NM, 11-Aug-2004.)
(dom 𝑅𝐴) ⊆ (𝑅 “ (𝑅𝐴))
 
Theoremimainss 5026 An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by NM, 11-Aug-2004.)
((𝑅𝐴) ∩ 𝐵) ⊆ (𝑅 “ (𝐴 ∩ (𝑅𝐵)))
 
Theoreminimass 5027 The image of an intersection. (Contributed by Thierry Arnoux, 16-Dec-2017.)
((𝐴𝐵) “ 𝐶) ⊆ ((𝐴𝐶) ∩ (𝐵𝐶))
 
Theoreminimasn 5028 The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017.)
(𝐶𝑉 → ((𝐴𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶})))
 
Theoremcnvxp 5029 The converse of a cross product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴 × 𝐵) = (𝐵 × 𝐴)
 
Theoremxp0 5030 The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.)
(𝐴 × ∅) = ∅
 
Theoremxpmlem 5031* The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 11-Dec-2018.)
((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
 
Theoremxpm 5032* The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 13-Dec-2018.)
((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
 
Theoremxpeq0r 5033 A cross product is empty if at least one member is empty. (Contributed by Jim Kingdon, 12-Dec-2018.)
((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 × 𝐵) = ∅)
 
Theoremsqxpeq0 5034 A Cartesian square is empty iff its member is empty. (Contributed by Jim Kingdon, 21-Apr-2023.)
((𝐴 × 𝐴) = ∅ ↔ 𝐴 = ∅)
 
Theoremxpdisj1 5035 Cross products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.)
((𝐴𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅)
 
Theoremxpdisj2 5036 Cross products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.)
((𝐴𝐵) = ∅ → ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ∅)
 
Theoremxpsndisj 5037 Cross products with two different singletons are disjoint. (Contributed by NM, 28-Jul-2004.)
(𝐵𝐷 → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅)
 
Theoremdjudisj 5038* Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.)
((𝐴𝐵) = ∅ → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
 
Theoremresdisj 5039 A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
((𝐴𝐵) = ∅ → ((𝐶𝐴) ↾ 𝐵) = ∅)
 
Theoremrnxpm 5040* The range of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37, with nonempty changed to inhabited. (Contributed by Jim Kingdon, 12-Dec-2018.)
(∃𝑥 𝑥𝐴 → ran (𝐴 × 𝐵) = 𝐵)
 
Theoremdmxpss 5041 The domain of a cross product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.)
dom (𝐴 × 𝐵) ⊆ 𝐴
 
Theoremrnxpss 5042 The range of a cross product is a subclass of the second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
ran (𝐴 × 𝐵) ⊆ 𝐵
 
Theoremdmxpss2 5043 Upper bound for the domain of a binary relation. (Contributed by BJ, 10-Jul-2022.)
(𝑅 ⊆ (𝐴 × 𝐵) → dom 𝑅𝐴)
 
Theoremrnxpss2 5044 Upper bound for the range of a binary relation. (Contributed by BJ, 10-Jul-2022.)
(𝑅 ⊆ (𝐴 × 𝐵) → ran 𝑅𝐵)
 
Theoremrnxpid 5045 The range of a square cross product. (Contributed by FL, 17-May-2010.)
ran (𝐴 × 𝐴) = 𝐴
 
Theoremssxpbm 5046* A cross-product subclass relationship is equivalent to the relationship for its components. (Contributed by Jim Kingdon, 12-Dec-2018.)
(∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))
 
Theoremssxp1 5047* Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.)
(∃𝑥 𝑥𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴𝐵))
 
Theoremssxp2 5048* Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.)
(∃𝑥 𝑥𝐶 → ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ↔ 𝐴𝐵))
 
Theoremxp11m 5049* The cross product of inhabited classes is one-to-one. (Contributed by Jim Kingdon, 13-Dec-2018.)
((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremxpcanm 5050* Cancellation law for cross-product. (Contributed by Jim Kingdon, 14-Dec-2018.)
(∃𝑥 𝑥𝐶 → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
 
Theoremxpcan2m 5051* Cancellation law for cross-product. (Contributed by Jim Kingdon, 14-Dec-2018.)
(∃𝑥 𝑥𝐶 → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremxpexr2m 5052* If a nonempty cross product is a set, so are both of its components. (Contributed by Jim Kingdon, 14-Dec-2018.)
(((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
 
Theoremssrnres 5053 Subset of the range of a restriction. (Contributed by NM, 16-Jan-2006.)
(𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)
 
Theoremrninxp 5054* Range of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
 
Theoremdminxp 5055* Domain of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.)
(dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
 
Theoremimainrect 5056 Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.)
((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ((𝐺 “ (𝑌𝐴)) ∩ 𝐵)
 
Theoremxpima1 5057 The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.)
((𝐴𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅)
 
Theoremxpima2m 5058* The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.)
(∃𝑥 𝑥 ∈ (𝐴𝐶) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)
 
Theoremxpimasn 5059 The image of a singleton by a cross product. (Contributed by Thierry Arnoux, 14-Jan-2018.)
(𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)
 
Theoremcnvcnv3 5060* The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015.)
𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}
 
Theoremdfrel2 5061 Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.)
(Rel 𝑅𝑅 = 𝑅)
 
Theoremdfrel4v 5062* A relation can be expressed as the set of ordered pairs in it. (Contributed by Mario Carneiro, 16-Aug-2015.)
(Rel 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
 
Theoremcnvcnv 5063 The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.)
𝐴 = (𝐴 ∩ (V × V))
 
Theoremcnvcnv2 5064 The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.)
𝐴 = (𝐴 ↾ V)
 
Theoremcnvcnvss 5065 The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.)
𝐴𝐴
 
Theoremcnveqb 5066 Equality theorem for converse. (Contributed by FL, 19-Sep-2011.)
((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵𝐴 = 𝐵))
 
Theoremcnveq0 5067 A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.)
(Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))
 
Theoremdfrel3 5068 Alternate definition of relation. (Contributed by NM, 14-May-2008.)
(Rel 𝑅 ↔ (𝑅 ↾ V) = 𝑅)
 
Theoremdmresv 5069 The domain of a universal restriction. (Contributed by NM, 14-May-2008.)
dom (𝐴 ↾ V) = dom 𝐴
 
Theoremrnresv 5070 The range of a universal restriction. (Contributed by NM, 14-May-2008.)
ran (𝐴 ↾ V) = ran 𝐴
 
Theoremdfrn4 5071 Range defined in terms of image. (Contributed by NM, 14-May-2008.)
ran 𝐴 = (𝐴 “ V)
 
Theoremcsbrng 5072 Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.)
(𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)
 
Theoremrescnvcnv 5073 The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴𝐵) = (𝐴𝐵)
 
Theoremcnvcnvres 5074 The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007.)
(𝐴𝐵) = (𝐴𝐵)
 
Theoremimacnvcnv 5075 The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
(𝐴𝐵) = (𝐴𝐵)
 
Theoremdmsnm 5076* The domain of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.)
(𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
 
Theoremrnsnm 5077* The range of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.)
(𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ ran {𝐴})
 
Theoremdmsn0 5078 The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.)
dom {∅} = ∅
 
Theoremcnvsn0 5079 The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.)
{∅} = ∅
 
Theoremdmsn0el 5080 The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.)
(∅ ∈ 𝐴 → dom {𝐴} = ∅)
 
Theoremrelsn2m 5081* A singleton is a relation iff it has an inhabited domain. (Contributed by Jim Kingdon, 16-Dec-2018.)
𝐴 ∈ V       (Rel {𝐴} ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
 
Theoremdmsnopg 5082 The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.)
(𝐵𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
 
Theoremdmpropg 5083 The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
((𝐵𝑉𝐷𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶})
 
Theoremdmsnop 5084 The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐵 ∈ V       dom {⟨𝐴, 𝐵⟩} = {𝐴}
 
Theoremdmprop 5085 The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.)
𝐵 ∈ V    &   𝐷 ∈ V       dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶}
 
Theoremdmtpop 5086 The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.)
𝐵 ∈ V    &   𝐷 ∈ V    &   𝐹 ∈ V       dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = {𝐴, 𝐶, 𝐸}
 
Theoremcnvcnvsn 5087 Double converse of a singleton of an ordered pair. (Unlike cnvsn 5093, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.)
{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
 
Theoremdmsnsnsng 5088 The domain of the singleton of the singleton of a singleton. (Contributed by Jim Kingdon, 16-Dec-2018.)
(𝐴 ∈ V → dom {{{𝐴}}} = {𝐴})
 
Theoremrnsnopg 5089 The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
(𝐴𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵})
 
Theoremrnpropg 5090 The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.)
((𝐴𝑉𝐵𝑊) → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷})
 
Theoremrnsnop 5091 The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V       ran {⟨𝐴, 𝐵⟩} = {𝐵}
 
Theoremop1sta 5092 Extract the first member of an ordered pair. (See op2nda 5095 to extract the second member and op1stb 4463 for an alternate version.) (Contributed by Raph Levien, 4-Dec-2003.)
𝐴 ∈ V    &   𝐵 ∈ V        dom {⟨𝐴, 𝐵⟩} = 𝐴
 
Theoremcnvsn 5093 Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
 
Theoremop2ndb 5094 Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4463 to extract the first member and op2nda 5095 for an alternate version.) (Contributed by NM, 25-Nov-2003.)
𝐴 ∈ V    &   𝐵 ∈ V        {⟨𝐴, 𝐵⟩} = 𝐵
 
Theoremop2nda 5095 Extract the second member of an ordered pair. (See op1sta 5092 to extract the first member and op2ndb 5094 for an alternate version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
𝐴 ∈ V    &   𝐵 ∈ V        ran {⟨𝐴, 𝐵⟩} = 𝐵
 
Theoremcnvsng 5096 Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.)
((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
 
Theoremopswapg 5097 Swap the members of an ordered pair. (Contributed by Jim Kingdon, 16-Dec-2018.)
((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩)
 
Theoremelxp4 5098 Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp5 5099. (Contributed by NM, 17-Feb-2004.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
 
Theoremelxp5 5099 Membership in a cross product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 5098 when the double intersection does not create class existence problems (caused by int0 3845). (Contributed by NM, 1-Aug-2004.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))
 
Theoremcnvresima 5100 An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.)
((𝐹𝐴) “ 𝐵) = ((𝐹𝐵) ∩ 𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >