ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnun GIF version

Theorem rnun 5096
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
rnun ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)

Proof of Theorem rnun
StepHypRef Expression
1 cnvun 5093 . . . 4 (𝐴𝐵) = (𝐴𝐵)
21dmeqi 4884 . . 3 dom (𝐴𝐵) = dom (𝐴𝐵)
3 dmun 4890 . . 3 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
42, 3eqtri 2227 . 2 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
5 df-rn 4690 . 2 ran (𝐴𝐵) = dom (𝐴𝐵)
6 df-rn 4690 . . 3 ran 𝐴 = dom 𝐴
7 df-rn 4690 . . 3 ran 𝐵 = dom 𝐵
86, 7uneq12i 3326 . 2 (ran 𝐴 ∪ ran 𝐵) = (dom 𝐴 ∪ dom 𝐵)
94, 5, 83eqtr4i 2237 1 ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3165  ccnv 4678  dom cdm 4679  ran crn 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-cnv 4687  df-dm 4689  df-rn 4690
This theorem is referenced by:  imaundi  5100  imaundir  5101  rnpropg  5167  fun  5454  foun  5548  fpr  5773  fprg  5774  sbthlemi6  7071  exmidfodomrlemim  7316
  Copyright terms: Public domain W3C validator