ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnun GIF version

Theorem rnun 5113
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
rnun ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)

Proof of Theorem rnun
StepHypRef Expression
1 cnvun 5110 . . . 4 (𝐴𝐵) = (𝐴𝐵)
21dmeqi 4901 . . 3 dom (𝐴𝐵) = dom (𝐴𝐵)
3 dmun 4907 . . 3 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
42, 3eqtri 2230 . 2 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
5 df-rn 4707 . 2 ran (𝐴𝐵) = dom (𝐴𝐵)
6 df-rn 4707 . . 3 ran 𝐴 = dom 𝐴
7 df-rn 4707 . . 3 ran 𝐵 = dom 𝐵
86, 7uneq12i 3336 . 2 (ran 𝐴 ∪ ran 𝐵) = (dom 𝐴 ∪ dom 𝐵)
94, 5, 83eqtr4i 2240 1 ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1375  cun 3175  ccnv 4695  dom cdm 4696  ran crn 4697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-cnv 4704  df-dm 4706  df-rn 4707
This theorem is referenced by:  imaundi  5117  imaundir  5118  rnpropg  5184  fun  5473  foun  5567  fpr  5794  fprg  5795  sbthlemi6  7097  exmidfodomrlemim  7347
  Copyright terms: Public domain W3C validator