![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rnun | GIF version |
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
rnun | ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvun 5036 | . . . 4 ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) | |
2 | 1 | dmeqi 4830 | . . 3 ⊢ dom ◡(𝐴 ∪ 𝐵) = dom (◡𝐴 ∪ ◡𝐵) |
3 | dmun 4836 | . . 3 ⊢ dom (◡𝐴 ∪ ◡𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) | |
4 | 2, 3 | eqtri 2198 | . 2 ⊢ dom ◡(𝐴 ∪ 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
5 | df-rn 4639 | . 2 ⊢ ran (𝐴 ∪ 𝐵) = dom ◡(𝐴 ∪ 𝐵) | |
6 | df-rn 4639 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | df-rn 4639 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
8 | 6, 7 | uneq12i 3289 | . 2 ⊢ (ran 𝐴 ∪ ran 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
9 | 4, 5, 8 | 3eqtr4i 2208 | 1 ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∪ cun 3129 ◡ccnv 4627 dom cdm 4628 ran crn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-cnv 4636 df-dm 4638 df-rn 4639 |
This theorem is referenced by: imaundi 5043 imaundir 5044 rnpropg 5110 fun 5390 foun 5482 fpr 5700 fprg 5701 sbthlemi6 6963 exmidfodomrlemim 7202 |
Copyright terms: Public domain | W3C validator |