| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rnun | GIF version | ||
| Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| rnun | ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvun 5110 | . . . 4 ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) | |
| 2 | 1 | dmeqi 4901 | . . 3 ⊢ dom ◡(𝐴 ∪ 𝐵) = dom (◡𝐴 ∪ ◡𝐵) |
| 3 | dmun 4907 | . . 3 ⊢ dom (◡𝐴 ∪ ◡𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) | |
| 4 | 2, 3 | eqtri 2230 | . 2 ⊢ dom ◡(𝐴 ∪ 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
| 5 | df-rn 4707 | . 2 ⊢ ran (𝐴 ∪ 𝐵) = dom ◡(𝐴 ∪ 𝐵) | |
| 6 | df-rn 4707 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | df-rn 4707 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 8 | 6, 7 | uneq12i 3336 | . 2 ⊢ (ran 𝐴 ∪ ran 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
| 9 | 4, 5, 8 | 3eqtr4i 2240 | 1 ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∪ cun 3175 ◡ccnv 4695 dom cdm 4696 ran crn 4697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-cnv 4704 df-dm 4706 df-rn 4707 |
| This theorem is referenced by: imaundi 5117 imaundir 5118 rnpropg 5184 fun 5473 foun 5567 fpr 5794 fprg 5795 sbthlemi6 7097 exmidfodomrlemim 7347 |
| Copyright terms: Public domain | W3C validator |