ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ococnv1 GIF version

Theorem f1ococnv1 5560
Description: The composition of a one-to-one onto function's converse and itself equals the identity relation restricted to the function's domain. (Contributed by NM, 13-Dec-2003.)
Assertion
Ref Expression
f1ococnv1 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))

Proof of Theorem f1ococnv1
StepHypRef Expression
1 f1orel 5534 . . . 4 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
2 dfrel2 5139 . . . 4 (Rel 𝐹𝐹 = 𝐹)
31, 2sylib 122 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹 = 𝐹)
43coeq2d 4845 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = (𝐹𝐹))
5 f1ocnv 5544 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
6 f1ococnv2 5558 . . 3 (𝐹:𝐵1-1-onto𝐴 → (𝐹𝐹) = ( I ↾ 𝐴))
75, 6syl 14 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
84, 7eqtr3d 2241 1 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373   I cid 4340  ccnv 4679  cres 4682  ccom 4684  Rel wrel 4685  1-1-ontowf1o 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-br 4049  df-opab 4111  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284
This theorem is referenced by:  f1cocnv1  5561  f1ocnvfv1  5856  fcof1o  5868  mapen  6955  hashfacen  10994
  Copyright terms: Public domain W3C validator