| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ococnv1 | GIF version | ||
| Description: The composition of a one-to-one onto function's converse and itself equals the identity relation restricted to the function's domain. (Contributed by NM, 13-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1ococnv1 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1orel 5534 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
| 2 | dfrel2 5139 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 3 | 1, 2 | sylib 122 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡◡𝐹 = 𝐹) |
| 4 | 3 | coeq2d 4845 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ ◡◡𝐹) = (◡𝐹 ∘ 𝐹)) |
| 5 | f1ocnv 5544 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 6 | f1ococnv2 5558 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → (◡𝐹 ∘ ◡◡𝐹) = ( I ↾ 𝐴)) | |
| 7 | 5, 6 | syl 14 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ ◡◡𝐹) = ( I ↾ 𝐴)) |
| 8 | 4, 7 | eqtr3d 2241 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 I cid 4340 ◡ccnv 4679 ↾ cres 4682 ∘ ccom 4684 Rel wrel 4685 –1-1-onto→wf1o 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 |
| This theorem is referenced by: f1cocnv1 5561 f1ocnvfv1 5856 fcof1o 5868 mapen 6955 hashfacen 10994 |
| Copyright terms: Public domain | W3C validator |