ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0fzdiffz0 GIF version

Theorem fz0fzdiffz0 10259
Description: The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.)
Assertion
Ref Expression
fz0fzdiffz0 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ∈ (0...𝑁))

Proof of Theorem fz0fzdiffz0
StepHypRef Expression
1 fz0fzelfz0 10256 . . 3 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ (0...𝑁))
2 elfzle1 10156 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)
32adantl 277 . . . . . 6 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑀𝐾)
43adantl 277 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → 𝑀𝐾)
5 elfznn0 10243 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
65adantr 276 . . . . . 6 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℕ0)
7 elfznn0 10243 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
8 nn0sub 9446 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
96, 7, 8syl2anr 290 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
104, 9mpbid 147 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → (𝐾𝑀) ∈ ℕ0)
11 elfz3nn0 10244 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
1211adantr 276 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → 𝑁 ∈ ℕ0)
13 elfz2nn0 10241 . . . . . . 7 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
14 elfz2 10144 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
15 zsubcl 9420 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀) ∈ ℤ)
1615zred 9502 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀) ∈ ℝ)
1716ancoms 268 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾𝑀) ∈ ℝ)
18173adant2 1019 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾𝑀) ∈ ℝ)
19 zre 9383 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
20193ad2ant3 1023 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℝ)
21 zre 9383 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
22213ad2ant2 1022 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℝ)
2318, 20, 223jca 1180 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
2423adantr 276 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → ((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
2524adantr 276 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) ∧ 𝐾𝑁) → ((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
26 nn0ge0 9327 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
2726adantl 277 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → 0 ≤ 𝑀)
28 nn0re 9311 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
29 subge02 8558 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ (𝐾𝑀) ≤ 𝐾))
3020, 28, 29syl2an 289 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → (0 ≤ 𝑀 ↔ (𝐾𝑀) ≤ 𝐾))
3127, 30mpbid 147 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → (𝐾𝑀) ≤ 𝐾)
3231anim1i 340 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) ∧ 𝐾𝑁) → ((𝐾𝑀) ≤ 𝐾𝐾𝑁))
33 letr 8162 . . . . . . . . . . . . . . . . 17 (((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐾𝑀) ≤ 𝐾𝐾𝑁) → (𝐾𝑀) ≤ 𝑁))
3425, 32, 33sylc 62 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) ∧ 𝐾𝑁) → (𝐾𝑀) ≤ 𝑁)
3534exp31 364 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝐾𝑁 → (𝐾𝑀) ≤ 𝑁)))
3635a1i 9 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝐾𝑁 → (𝐾𝑀) ≤ 𝑁))))
3736com14 88 . . . . . . . . . . . . 13 (𝐾𝑁 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁))))
3837adantl 277 . . . . . . . . . . . 12 ((𝑀𝐾𝐾𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁))))
3938impcom 125 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁)))
4014, 39sylbi 121 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁)))
4140com13 80 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁)))
4241impcom 125 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁))
43423adant3 1020 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁))
4413, 43sylbi 121 . . . . . 6 (𝑀 ∈ (0...𝑁) → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁))
4544imp 124 . . . . 5 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ≤ 𝑁)
4645adantl 277 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → (𝐾𝑀) ≤ 𝑁)
4710, 12, 463jca 1180 . . 3 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
481, 47mpancom 422 . 2 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
49 elfz2nn0 10241 . 2 ((𝐾𝑀) ∈ (0...𝑁) ↔ ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
5048, 49sylibr 134 1 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wcel 2177   class class class wbr 4047  (class class class)co 5951  cr 7931  0cc0 7932  cle 8115  cmin 8250  0cn0 9302  cz 9379  ...cfz 10137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-n0 9303  df-z 9380  df-uz 9656  df-fz 10138
This theorem is referenced by:  pfxtrcfv  11152
  Copyright terms: Public domain W3C validator