ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0fzdiffz0 GIF version

Theorem fz0fzdiffz0 10075
Description: The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.)
Assertion
Ref Expression
fz0fzdiffz0 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ∈ (0...𝑁))

Proof of Theorem fz0fzdiffz0
StepHypRef Expression
1 fz0fzelfz0 10072 . . 3 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ (0...𝑁))
2 elfzle1 9972 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)
32adantl 275 . . . . . 6 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑀𝐾)
43adantl 275 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → 𝑀𝐾)
5 elfznn0 10059 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
65adantr 274 . . . . . 6 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℕ0)
7 elfznn0 10059 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
8 nn0sub 9267 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
96, 7, 8syl2anr 288 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
104, 9mpbid 146 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → (𝐾𝑀) ∈ ℕ0)
11 elfz3nn0 10060 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
1211adantr 274 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → 𝑁 ∈ ℕ0)
13 elfz2nn0 10057 . . . . . . 7 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
14 elfz2 9961 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
15 zsubcl 9242 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀) ∈ ℤ)
1615zred 9323 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀) ∈ ℝ)
1716ancoms 266 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾𝑀) ∈ ℝ)
18173adant2 1011 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾𝑀) ∈ ℝ)
19 zre 9205 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
20193ad2ant3 1015 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℝ)
21 zre 9205 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
22213ad2ant2 1014 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℝ)
2318, 20, 223jca 1172 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
2423adantr 274 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → ((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
2524adantr 274 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) ∧ 𝐾𝑁) → ((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
26 nn0ge0 9149 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
2726adantl 275 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → 0 ≤ 𝑀)
28 nn0re 9133 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
29 subge02 8386 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ (𝐾𝑀) ≤ 𝐾))
3020, 28, 29syl2an 287 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → (0 ≤ 𝑀 ↔ (𝐾𝑀) ≤ 𝐾))
3127, 30mpbid 146 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → (𝐾𝑀) ≤ 𝐾)
3231anim1i 338 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) ∧ 𝐾𝑁) → ((𝐾𝑀) ≤ 𝐾𝐾𝑁))
33 letr 7991 . . . . . . . . . . . . . . . . 17 (((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐾𝑀) ≤ 𝐾𝐾𝑁) → (𝐾𝑀) ≤ 𝑁))
3425, 32, 33sylc 62 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) ∧ 𝐾𝑁) → (𝐾𝑀) ≤ 𝑁)
3534exp31 362 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝐾𝑁 → (𝐾𝑀) ≤ 𝑁)))
3635a1i 9 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝐾𝑁 → (𝐾𝑀) ≤ 𝑁))))
3736com14 88 . . . . . . . . . . . . 13 (𝐾𝑁 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁))))
3837adantl 275 . . . . . . . . . . . 12 ((𝑀𝐾𝐾𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁))))
3938impcom 124 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁)))
4014, 39sylbi 120 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁)))
4140com13 80 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁)))
4241impcom 124 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁))
43423adant3 1012 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁))
4413, 43sylbi 120 . . . . . 6 (𝑀 ∈ (0...𝑁) → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁))
4544imp 123 . . . . 5 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ≤ 𝑁)
4645adantl 275 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → (𝐾𝑀) ≤ 𝑁)
4710, 12, 463jca 1172 . . 3 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
481, 47mpancom 420 . 2 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
49 elfz2nn0 10057 . 2 ((𝐾𝑀) ∈ (0...𝑁) ↔ ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
5048, 49sylibr 133 1 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973  wcel 2141   class class class wbr 3987  (class class class)co 5851  cr 7762  0cc0 7763  cle 7944  cmin 8079  0cn0 9124  cz 9201  ...cfz 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-addcom 7863  ax-addass 7865  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-0id 7871  ax-rnegex 7872  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-ltadd 7879
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-inn 8868  df-n0 9125  df-z 9202  df-uz 9477  df-fz 9955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator