ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funmpt GIF version

Theorem funmpt 5255
Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
funmpt Fun (𝑥𝐴𝐵)

Proof of Theorem funmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funopab4 5254 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
2 df-mpt 4067 . . 3 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
32funeqi 5238 . 2 (Fun (𝑥𝐴𝐵) ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)})
41, 3mpbir 146 1 Fun (𝑥𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1353  wcel 2148  {copab 4064  cmpt 4065  Fun wfun 5211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-fun 5219
This theorem is referenced by:  funmpt2  5256  fmptco  5683  resfunexg  5738  mptexg  5742  mptexw  6114  brtpos2  6252  tposfun  6261  rdgtfr  6375  rdgruledefgg  6376  rdgon  6387  freccllem  6403  frecfcllem  6405  hashinfom  10758  hashennn  10760  negfi  11236  tgrest  13672  dvrecap  14180  funmptd  14558
  Copyright terms: Public domain W3C validator