Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funmpt | GIF version |
Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
Ref | Expression |
---|---|
funmpt | ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab4 5204 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | df-mpt 4027 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
3 | 2 | funeqi 5188 | . 2 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
4 | 1, 3 | mpbir 145 | 1 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1335 ∈ wcel 2128 {copab 4024 ↦ cmpt 4025 Fun wfun 5161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-fun 5169 |
This theorem is referenced by: funmpt2 5206 fmptco 5630 resfunexg 5685 mptexg 5689 brtpos2 6192 tposfun 6201 rdgtfr 6315 rdgruledefgg 6316 rdgon 6327 freccllem 6343 frecfcllem 6345 hashinfom 10634 hashennn 10636 negfi 11109 tgrest 12529 dvrecap 13037 funmptd 13337 |
Copyright terms: Public domain | W3C validator |