ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funmpt GIF version

Theorem funmpt 5356
Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
funmpt Fun (𝑥𝐴𝐵)

Proof of Theorem funmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funopab4 5355 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
2 df-mpt 4147 . . 3 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
32funeqi 5339 . 2 (Fun (𝑥𝐴𝐵) ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)})
41, 3mpbir 146 1 Fun (𝑥𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  {copab 4144  cmpt 4145  Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-fun 5320
This theorem is referenced by:  funmpt2  5357  fmptco  5803  resfunexg  5864  mptexg  5868  mptexw  6264  brtpos2  6403  tposfun  6412  rdgtfr  6526  rdgruledefgg  6527  rdgon  6538  freccllem  6554  frecfcllem  6556  hashinfom  11008  hashennn  11010  negfi  11747  tgrest  14851  dvrecap  15395  funmptd  16191
  Copyright terms: Public domain W3C validator