Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resmpt | GIF version |
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013.) |
Ref | Expression |
---|---|
resmpt | ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resopab2 4938 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ↾ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)}) | |
2 | df-mpt 4052 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | |
3 | 2 | reseq1i 4887 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ↾ 𝐵) |
4 | df-mpt 4052 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)} | |
5 | 1, 3, 4 | 3eqtr4g 2228 | 1 ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ⊆ wss 3121 {copab 4049 ↦ cmpt 4050 ↾ cres 4613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-mpt 4052 df-xp 4617 df-rel 4618 df-res 4623 |
This theorem is referenced by: resmpt3 4940 resmptf 4941 resmptd 4942 f1stres 6138 f2ndres 6139 tposss 6225 dftpos2 6240 dftpos4 6242 djuf1olemr 7031 fisumss 11355 isumclim3 11386 expcnv 11467 fprodssdc 11553 tgrest 12963 cnmptid 13075 dvidlemap 13454 dvcnp2cntop 13457 dvmulxxbr 13460 dvcoapbr 13465 dvrecap 13471 |
Copyright terms: Public domain | W3C validator |