| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resmpt | GIF version | ||
| Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013.) |
| Ref | Expression |
|---|---|
| resmpt | ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resopab2 5011 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ↾ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)}) | |
| 2 | df-mpt 4111 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | |
| 3 | 2 | reseq1i 4960 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ↾ 𝐵) |
| 4 | df-mpt 4111 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)} | |
| 5 | 1, 3, 4 | 3eqtr4g 2264 | 1 ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ⊆ wss 3167 {copab 4108 ↦ cmpt 4109 ↾ cres 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-opab 4110 df-mpt 4111 df-xp 4685 df-rel 4686 df-res 4691 |
| This theorem is referenced by: resmpt3 5013 resmptf 5014 resmptd 5015 f1stres 6252 f2ndres 6253 tposss 6339 dftpos2 6354 dftpos4 6356 djuf1olemr 7163 fisumss 11747 isumclim3 11778 expcnv 11859 fprodssdc 11945 conjsubg 13657 gsumfzfsumlemm 14393 tgrest 14685 cnmptid 14797 hovercncf 15162 dvidlemap 15207 dvidrelem 15208 dvidsslem 15209 dvcnp2cntop 15215 dvmulxxbr 15218 dvcoapbr 15223 dvrecap 15229 |
| Copyright terms: Public domain | W3C validator |