![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resmpt | GIF version |
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013.) |
Ref | Expression |
---|---|
resmpt | ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resopab2 4990 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ↾ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)}) | |
2 | df-mpt 4093 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | |
3 | 2 | reseq1i 4939 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ↾ 𝐵) |
4 | df-mpt 4093 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)} | |
5 | 1, 3, 4 | 3eqtr4g 2251 | 1 ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ⊆ wss 3154 {copab 4090 ↦ cmpt 4091 ↾ cres 4662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-opab 4092 df-mpt 4093 df-xp 4666 df-rel 4667 df-res 4672 |
This theorem is referenced by: resmpt3 4992 resmptf 4993 resmptd 4994 f1stres 6214 f2ndres 6215 tposss 6301 dftpos2 6316 dftpos4 6318 djuf1olemr 7115 fisumss 11538 isumclim3 11569 expcnv 11650 fprodssdc 11736 conjsubg 13350 gsumfzfsumlemm 14086 tgrest 14348 cnmptid 14460 hovercncf 14825 dvidlemap 14870 dvidrelem 14871 dvidsslem 14872 dvcnp2cntop 14878 dvmulxxbr 14881 dvcoapbr 14886 dvrecap 14892 |
Copyright terms: Public domain | W3C validator |