| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resmpt | GIF version | ||
| Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013.) |
| Ref | Expression |
|---|---|
| resmpt | ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resopab2 5028 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ↾ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)}) | |
| 2 | df-mpt 4126 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | |
| 3 | 2 | reseq1i 4977 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ↾ 𝐵) |
| 4 | df-mpt 4126 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)} | |
| 5 | 1, 3, 4 | 3eqtr4g 2267 | 1 ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 ⊆ wss 3177 {copab 4123 ↦ cmpt 4124 ↾ cres 4698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-opab 4125 df-mpt 4126 df-xp 4702 df-rel 4703 df-res 4708 |
| This theorem is referenced by: resmpt3 5030 resmptf 5031 resmptd 5032 f1stres 6275 f2ndres 6276 tposss 6362 dftpos2 6377 dftpos4 6379 djuf1olemr 7189 fisumss 11869 isumclim3 11900 expcnv 11981 fprodssdc 12067 conjsubg 13780 gsumfzfsumlemm 14516 tgrest 14808 cnmptid 14920 hovercncf 15285 dvidlemap 15330 dvidrelem 15331 dvidsslem 15332 dvcnp2cntop 15338 dvmulxxbr 15341 dvcoapbr 15346 dvrecap 15352 |
| Copyright terms: Public domain | W3C validator |