ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmpt GIF version

Theorem resmpt 5029
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013.)
Assertion
Ref Expression
resmpt (𝐵𝐴 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem resmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 resopab2 5028 . 2 (𝐵𝐴 → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} ↾ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝐶)})
2 df-mpt 4126 . . 3 (𝑥𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
32reseq1i 4977 . 2 ((𝑥𝐴𝐶) ↾ 𝐵) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} ↾ 𝐵)
4 df-mpt 4126 . 2 (𝑥𝐵𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝐶)}
51, 3, 43eqtr4g 2267 1 (𝐵𝐴 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wss 3177  {copab 4123  cmpt 4124  cres 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-opab 4125  df-mpt 4126  df-xp 4702  df-rel 4703  df-res 4708
This theorem is referenced by:  resmpt3  5030  resmptf  5031  resmptd  5032  f1stres  6275  f2ndres  6276  tposss  6362  dftpos2  6377  dftpos4  6379  djuf1olemr  7189  fisumss  11869  isumclim3  11900  expcnv  11981  fprodssdc  12067  conjsubg  13780  gsumfzfsumlemm  14516  tgrest  14808  cnmptid  14920  hovercncf  15285  dvidlemap  15330  dvidrelem  15331  dvidsslem  15332  dvcnp2cntop  15338  dvmulxxbr  15341  dvcoapbr  15346  dvrecap  15352
  Copyright terms: Public domain W3C validator