![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resmpt | GIF version |
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013.) |
Ref | Expression |
---|---|
resmpt | ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resopab2 4954 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ↾ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)}) | |
2 | df-mpt 4066 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | |
3 | 2 | reseq1i 4903 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ↾ 𝐵) |
4 | df-mpt 4066 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)} | |
5 | 1, 3, 4 | 3eqtr4g 2235 | 1 ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ⊆ wss 3129 {copab 4063 ↦ cmpt 4064 ↾ cres 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-opab 4065 df-mpt 4066 df-xp 4632 df-rel 4633 df-res 4638 |
This theorem is referenced by: resmpt3 4956 resmptf 4957 resmptd 4958 f1stres 6159 f2ndres 6160 tposss 6246 dftpos2 6261 dftpos4 6263 djuf1olemr 7052 fisumss 11399 isumclim3 11430 expcnv 11511 fprodssdc 11597 tgrest 13639 cnmptid 13751 dvidlemap 14130 dvcnp2cntop 14133 dvmulxxbr 14136 dvcoapbr 14141 dvrecap 14147 |
Copyright terms: Public domain | W3C validator |