Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resmpt | GIF version |
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013.) |
Ref | Expression |
---|---|
resmpt | ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resopab2 4931 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ↾ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)}) | |
2 | df-mpt 4045 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} | |
3 | 2 | reseq1i 4880 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ↾ 𝐵) |
4 | df-mpt 4045 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)} | |
5 | 1, 3, 4 | 3eqtr4g 2224 | 1 ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 {copab 4042 ↦ cmpt 4043 ↾ cres 4606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-mpt 4045 df-xp 4610 df-rel 4611 df-res 4616 |
This theorem is referenced by: resmpt3 4933 resmptf 4934 resmptd 4935 f1stres 6127 f2ndres 6128 tposss 6214 dftpos2 6229 dftpos4 6231 djuf1olemr 7019 fisumss 11333 isumclim3 11364 expcnv 11445 fprodssdc 11531 tgrest 12809 cnmptid 12921 dvidlemap 13300 dvcnp2cntop 13303 dvmulxxbr 13306 dvcoapbr 13311 dvrecap 13317 |
Copyright terms: Public domain | W3C validator |