| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfmpt3 | GIF version | ||
| Description: Alternate definition for the maps-to notation df-mpt 4106. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| Ref | Expression |
|---|---|
| dfmpt3 | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 4106 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | velsn 3649 | . . . . . . 7 ⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) | |
| 3 | 2 | anbi2i 457 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) |
| 4 | 3 | anbi2i 457 | . . . . 5 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵})) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))) |
| 5 | 4 | 2exbii 1628 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵})) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))) |
| 6 | eliunxp 4815 | . . . 4 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝐵}))) | |
| 7 | elopab 4302 | . . . 4 ⊢ (𝑧 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))) | |
| 8 | 5, 6, 7 | 3bitr4i 212 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) ↔ 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
| 9 | 8 | eqriv 2201 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 10 | 1, 9 | eqtr4i 2228 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1372 ∃wex 1514 ∈ wcel 2175 {csn 3632 〈cop 3635 ∪ ciun 3926 {copab 4103 ↦ cmpt 4104 × cxp 4671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-iun 3928 df-opab 4105 df-mpt 4106 df-xp 4679 df-rel 4680 |
| This theorem is referenced by: dfmpt 5751 dfmptg 5753 |
| Copyright terms: Public domain | W3C validator |