ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpt3 GIF version

Theorem dfmpt3 5377
Description: Alternate definition for the maps-to notation df-mpt 4093. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
dfmpt3 (𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})

Proof of Theorem dfmpt3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpt 4093 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
2 velsn 3636 . . . . . . 7 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
32anbi2i 457 . . . . . 6 ((𝑥𝐴𝑦 ∈ {𝐵}) ↔ (𝑥𝐴𝑦 = 𝐵))
43anbi2i 457 . . . . 5 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ {𝐵})) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 = 𝐵)))
542exbii 1617 . . . 4 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ {𝐵})) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 = 𝐵)))
6 eliunxp 4802 . . . 4 (𝑧 𝑥𝐴 ({𝑥} × {𝐵}) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ {𝐵})))
7 elopab 4289 . . . 4 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 = 𝐵)))
85, 6, 73bitr4i 212 . . 3 (𝑧 𝑥𝐴 ({𝑥} × {𝐵}) ↔ 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)})
98eqriv 2190 . 2 𝑥𝐴 ({𝑥} × {𝐵}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
101, 9eqtr4i 2217 1 (𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1503  wcel 2164  {csn 3619  cop 3622   ciun 3913  {copab 4090  cmpt 4091   × cxp 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-iun 3915  df-opab 4092  df-mpt 4093  df-xp 4666  df-rel 4667
This theorem is referenced by:  dfmpt  5736  dfmptg  5738
  Copyright terms: Public domain W3C validator