| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvmpt | GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| cbvmpt.1 | ⊢ Ⅎ𝑦𝐵 | 
| cbvmpt.2 | ⊢ Ⅎ𝑥𝐶 | 
| cbvmpt.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | 
| Ref | Expression | 
|---|---|
| cbvmpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | . . . 4 ⊢ Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) | |
| 2 | nfv 1542 | . . . . 5 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 | |
| 3 | nfs1v 1958 | . . . . 5 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝑧 = 𝐵 | |
| 4 | 2, 3 | nfan 1579 | . . . 4 ⊢ Ⅎ𝑥(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) | 
| 5 | eleq1 2259 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | |
| 6 | sbequ12 1785 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵)) | |
| 7 | 5, 6 | anbi12d 473 | . . . 4 ⊢ (𝑥 = 𝑤 → ((𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵))) | 
| 8 | 1, 4, 7 | cbvopab1 4106 | . . 3 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} | 
| 9 | nfv 1542 | . . . . 5 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐴 | |
| 10 | cbvmpt.1 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
| 11 | 10 | nfeq2 2351 | . . . . . 6 ⊢ Ⅎ𝑦 𝑧 = 𝐵 | 
| 12 | 11 | nfsb 1965 | . . . . 5 ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝑧 = 𝐵 | 
| 13 | 9, 12 | nfan 1579 | . . . 4 ⊢ Ⅎ𝑦(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) | 
| 14 | nfv 1542 | . . . 4 ⊢ Ⅎ𝑤(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶) | |
| 15 | eleq1 2259 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 16 | sbequ 1854 | . . . . . 6 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ [𝑦 / 𝑥]𝑧 = 𝐵)) | |
| 17 | cbvmpt.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐶 | |
| 18 | 17 | nfeq2 2351 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑧 = 𝐶 | 
| 19 | cbvmpt.3 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 20 | 19 | eqeq2d 2208 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) | 
| 21 | 18, 20 | sbie 1805 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶) | 
| 22 | 16, 21 | bitrdi 196 | . . . . 5 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) | 
| 23 | 15, 22 | anbi12d 473 | . . . 4 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶))) | 
| 24 | 13, 14, 23 | cbvopab1 4106 | . . 3 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | 
| 25 | 8, 24 | eqtri 2217 | . 2 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | 
| 26 | df-mpt 4096 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 27 | df-mpt 4096 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐶) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | |
| 28 | 25, 26, 27 | 3eqtr4i 2227 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 [wsb 1776 ∈ wcel 2167 Ⅎwnfc 2326 {copab 4093 ↦ cmpt 4094 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-mpt 4096 | 
| This theorem is referenced by: cbvmptv 4129 dffn5imf 5616 fvmpts 5639 fvmpt2 5645 mptfvex 5647 fmptcof 5729 fmptcos 5730 fliftfuns 5845 offval2 6151 qliftfuns 6678 cc2 7334 summodclem2a 11546 zsumdc 11549 fsum3cvg2 11559 cbvprod 11723 zproddc 11744 fprodseq 11748 pcmptdvds 12514 gsumfzconstf 13472 cnmpt1t 14521 fsumcncntop 14803 limcmpted 14899 dvmptfsum 14961 | 
| Copyright terms: Public domain | W3C validator |