| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmpt | GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) |
| Ref | Expression |
|---|---|
| cbvmpt.1 | ⊢ Ⅎ𝑦𝐵 |
| cbvmpt.2 | ⊢ Ⅎ𝑥𝐶 |
| cbvmpt.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvmpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) | |
| 2 | nfv 1574 | . . . . 5 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 | |
| 3 | nfs1v 1990 | . . . . 5 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝑧 = 𝐵 | |
| 4 | 2, 3 | nfan 1611 | . . . 4 ⊢ Ⅎ𝑥(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
| 5 | eleq1 2292 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | |
| 6 | sbequ12 1817 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵)) | |
| 7 | 5, 6 | anbi12d 473 | . . . 4 ⊢ (𝑥 = 𝑤 → ((𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵))) |
| 8 | 1, 4, 7 | cbvopab1 4157 | . . 3 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} |
| 9 | nfv 1574 | . . . . 5 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐴 | |
| 10 | cbvmpt.1 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
| 11 | 10 | nfeq2 2384 | . . . . . 6 ⊢ Ⅎ𝑦 𝑧 = 𝐵 |
| 12 | 11 | nfsb 1997 | . . . . 5 ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝑧 = 𝐵 |
| 13 | 9, 12 | nfan 1611 | . . . 4 ⊢ Ⅎ𝑦(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
| 14 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑤(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶) | |
| 15 | eleq1 2292 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 16 | sbequ 1886 | . . . . . 6 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ [𝑦 / 𝑥]𝑧 = 𝐵)) | |
| 17 | cbvmpt.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐶 | |
| 18 | 17 | nfeq2 2384 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑧 = 𝐶 |
| 19 | cbvmpt.3 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 20 | 19 | eqeq2d 2241 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
| 21 | 18, 20 | sbie 1837 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶) |
| 22 | 16, 21 | bitrdi 196 | . . . . 5 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
| 23 | 15, 22 | anbi12d 473 | . . . 4 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶))) |
| 24 | 13, 14, 23 | cbvopab1 4157 | . . 3 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
| 25 | 8, 24 | eqtri 2250 | . 2 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
| 26 | df-mpt 4147 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 27 | df-mpt 4147 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐶) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | |
| 28 | 25, 26, 27 | 3eqtr4i 2260 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 [wsb 1808 ∈ wcel 2200 Ⅎwnfc 2359 {copab 4144 ↦ cmpt 4145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4146 df-mpt 4147 |
| This theorem is referenced by: cbvmptv 4180 dffn5imf 5691 fvmpts 5714 fvmpt2 5720 mptfvex 5722 fmptcof 5804 fmptcos 5805 fliftfuns 5928 offval2 6240 qliftfuns 6774 cc2 7461 summodclem2a 11900 zsumdc 11903 fsum3cvg2 11913 cbvprod 12077 zproddc 12098 fprodseq 12102 pcmptdvds 12876 gsumfzconstf 13887 cnmpt1t 14967 fsumcncntop 15249 limcmpted 15345 dvmptfsum 15407 |
| Copyright terms: Public domain | W3C validator |