Step | Hyp | Ref
| Expression |
1 | | nfv 1516 |
. . . 4
⊢
Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) |
2 | | nfv 1516 |
. . . . 5
⊢
Ⅎ𝑥 𝑤 ∈ 𝐴 |
3 | | nfs1v 1927 |
. . . . 5
⊢
Ⅎ𝑥[𝑤 / 𝑥]𝑧 = 𝐵 |
4 | 2, 3 | nfan 1553 |
. . . 4
⊢
Ⅎ𝑥(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
5 | | eleq1 2229 |
. . . . 5
⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) |
6 | | sbequ12 1759 |
. . . . 5
⊢ (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵)) |
7 | 5, 6 | anbi12d 465 |
. . . 4
⊢ (𝑥 = 𝑤 → ((𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵))) |
8 | 1, 4, 7 | cbvopab1 4055 |
. . 3
⊢
{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} |
9 | | nfv 1516 |
. . . . 5
⊢
Ⅎ𝑦 𝑤 ∈ 𝐴 |
10 | | cbvmpt.1 |
. . . . . . 7
⊢
Ⅎ𝑦𝐵 |
11 | 10 | nfeq2 2320 |
. . . . . 6
⊢
Ⅎ𝑦 𝑧 = 𝐵 |
12 | 11 | nfsb 1934 |
. . . . 5
⊢
Ⅎ𝑦[𝑤 / 𝑥]𝑧 = 𝐵 |
13 | 9, 12 | nfan 1553 |
. . . 4
⊢
Ⅎ𝑦(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
14 | | nfv 1516 |
. . . 4
⊢
Ⅎ𝑤(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶) |
15 | | eleq1 2229 |
. . . . 5
⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
16 | | sbequ 1828 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ [𝑦 / 𝑥]𝑧 = 𝐵)) |
17 | | cbvmpt.2 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐶 |
18 | 17 | nfeq2 2320 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 = 𝐶 |
19 | | cbvmpt.3 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
20 | 19 | eqeq2d 2177 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
21 | 18, 20 | sbie 1779 |
. . . . . 6
⊢ ([𝑦 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶) |
22 | 16, 21 | bitrdi 195 |
. . . . 5
⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
23 | 15, 22 | anbi12d 465 |
. . . 4
⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶))) |
24 | 13, 14, 23 | cbvopab1 4055 |
. . 3
⊢
{〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
25 | 8, 24 | eqtri 2186 |
. 2
⊢
{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
26 | | df-mpt 4045 |
. 2
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} |
27 | | df-mpt 4045 |
. 2
⊢ (𝑦 ∈ 𝐴 ↦ 𝐶) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
28 | 25, 26, 27 | 3eqtr4i 2196 |
1
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |