ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmpt GIF version

Theorem cbvmpt 4077
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
cbvmpt.1 𝑦𝐵
cbvmpt.2 𝑥𝐶
cbvmpt.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvmpt (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvmpt
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1516 . . . 4 𝑤(𝑥𝐴𝑧 = 𝐵)
2 nfv 1516 . . . . 5 𝑥 𝑤𝐴
3 nfs1v 1927 . . . . 5 𝑥[𝑤 / 𝑥]𝑧 = 𝐵
42, 3nfan 1553 . . . 4 𝑥(𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)
5 eleq1 2229 . . . . 5 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
6 sbequ12 1759 . . . . 5 (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵))
75, 6anbi12d 465 . . . 4 (𝑥 = 𝑤 → ((𝑥𝐴𝑧 = 𝐵) ↔ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)))
81, 4, 7cbvopab1 4055 . . 3 {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)}
9 nfv 1516 . . . . 5 𝑦 𝑤𝐴
10 cbvmpt.1 . . . . . . 7 𝑦𝐵
1110nfeq2 2320 . . . . . 6 𝑦 𝑧 = 𝐵
1211nfsb 1934 . . . . 5 𝑦[𝑤 / 𝑥]𝑧 = 𝐵
139, 12nfan 1553 . . . 4 𝑦(𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)
14 nfv 1516 . . . 4 𝑤(𝑦𝐴𝑧 = 𝐶)
15 eleq1 2229 . . . . 5 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
16 sbequ 1828 . . . . . 6 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ [𝑦 / 𝑥]𝑧 = 𝐵))
17 cbvmpt.2 . . . . . . . 8 𝑥𝐶
1817nfeq2 2320 . . . . . . 7 𝑥 𝑧 = 𝐶
19 cbvmpt.3 . . . . . . . 8 (𝑥 = 𝑦𝐵 = 𝐶)
2019eqeq2d 2177 . . . . . . 7 (𝑥 = 𝑦 → (𝑧 = 𝐵𝑧 = 𝐶))
2118, 20sbie 1779 . . . . . 6 ([𝑦 / 𝑥]𝑧 = 𝐵𝑧 = 𝐶)
2216, 21bitrdi 195 . . . . 5 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵𝑧 = 𝐶))
2315, 22anbi12d 465 . . . 4 (𝑤 = 𝑦 → ((𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦𝐴𝑧 = 𝐶)))
2413, 14, 23cbvopab1 4055 . . 3 {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
258, 24eqtri 2186 . 2 {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
26 df-mpt 4045 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)}
27 df-mpt 4045 . 2 (𝑦𝐴𝐶) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
2825, 26, 273eqtr4i 2196 1 (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  [wsb 1750  wcel 2136  wnfc 2295  {copab 4042  cmpt 4043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-mpt 4045
This theorem is referenced by:  cbvmptv  4078  dffn5imf  5541  fvmpts  5564  fvmpt2  5569  mptfvex  5571  fmptcof  5652  fmptcos  5653  fliftfuns  5766  offval2  6065  qliftfuns  6585  cc2  7208  summodclem2a  11322  zsumdc  11325  fsum3cvg2  11335  cbvprod  11499  zproddc  11520  fprodseq  11524  pcmptdvds  12275  cnmpt1t  12925  fsumcncntop  13196  limcmpted  13272
  Copyright terms: Public domain W3C validator