ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvd GIF version

Theorem f1ocnvd 6075
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
f1od.1 𝐹 = (𝑥𝐴𝐶)
f1od.2 ((𝜑𝑥𝐴) → 𝐶𝑊)
f1od.3 ((𝜑𝑦𝐵) → 𝐷𝑋)
f1od.4 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
Assertion
Ref Expression
f1ocnvd (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem f1ocnvd
StepHypRef Expression
1 f1od.2 . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝑊)
21ralrimiva 2550 . . . 4 (𝜑 → ∀𝑥𝐴 𝐶𝑊)
3 f1od.1 . . . . 5 𝐹 = (𝑥𝐴𝐶)
43fnmpt 5344 . . . 4 (∀𝑥𝐴 𝐶𝑊𝐹 Fn 𝐴)
52, 4syl 14 . . 3 (𝜑𝐹 Fn 𝐴)
6 f1od.3 . . . . . 6 ((𝜑𝑦𝐵) → 𝐷𝑋)
76ralrimiva 2550 . . . . 5 (𝜑 → ∀𝑦𝐵 𝐷𝑋)
8 eqid 2177 . . . . . 6 (𝑦𝐵𝐷) = (𝑦𝐵𝐷)
98fnmpt 5344 . . . . 5 (∀𝑦𝐵 𝐷𝑋 → (𝑦𝐵𝐷) Fn 𝐵)
107, 9syl 14 . . . 4 (𝜑 → (𝑦𝐵𝐷) Fn 𝐵)
11 f1od.4 . . . . . . 7 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
1211opabbidv 4071 . . . . . 6 (𝜑 → {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = 𝐷)})
13 df-mpt 4068 . . . . . . . . 9 (𝑥𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
143, 13eqtri 2198 . . . . . . . 8 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
1514cnveqi 4804 . . . . . . 7 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
16 cnvopab 5032 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
1715, 16eqtri 2198 . . . . . 6 𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
18 df-mpt 4068 . . . . . 6 (𝑦𝐵𝐷) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = 𝐷)}
1912, 17, 183eqtr4g 2235 . . . . 5 (𝜑𝐹 = (𝑦𝐵𝐷))
2019fneq1d 5308 . . . 4 (𝜑 → (𝐹 Fn 𝐵 ↔ (𝑦𝐵𝐷) Fn 𝐵))
2110, 20mpbird 167 . . 3 (𝜑𝐹 Fn 𝐵)
22 dff1o4 5471 . . 3 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
235, 21, 22sylanbrc 417 . 2 (𝜑𝐹:𝐴1-1-onto𝐵)
2423, 19jca 306 1 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  {copab 4065  cmpt 4066  ccnv 4627   Fn wfn 5213  1-1-ontowf1o 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225
This theorem is referenced by:  f1od  6076  f1ocnv2d  6077
  Copyright terms: Public domain W3C validator