![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvmptg | GIF version |
Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . 2 ⊢ 𝐶 = 𝐶 | |
2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | eqeq2d 2205 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
4 | eqeq1 2200 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
5 | moeq 2935 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
6 | 5 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
8 | df-mpt 4092 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
9 | 7, 8 | eqtri 2214 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
10 | 3, 4, 6, 9 | fvopab3ig 5631 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
11 | 1, 10 | mpi 15 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃*wmo 2043 ∈ wcel 2164 {copab 4089 ↦ cmpt 4090 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 |
This theorem is referenced by: fvmpt 5634 fvmpts 5635 fvmpt3 5636 fvmpt2 5641 f1mpt 5814 caofinvl 6155 1stvalg 6195 2ndvalg 6196 brtpos2 6304 rdgon 6439 frec0g 6450 freccllem 6455 frecfcllem 6457 frecsuclem 6459 sucinc 6498 sucinc2 6499 omcl 6514 oeicl 6515 oav2 6516 omv2 6518 fvdiagfn 6747 djulclr 7108 djurclr 7109 djulcl 7110 djurcl 7111 djulclb 7114 omp1eomlem 7153 ctmlemr 7167 nnnninf 7185 nnnninfeq 7187 cardval3ex 7245 ceilqval 10377 frec2uzzd 10471 frec2uzsucd 10472 monoord2 10557 iseqf1olemqval 10571 iseqf1olemqk 10578 seq3f1olemqsum 10584 seq3f1oleml 10587 seq3f1o 10588 seq3distr 10603 ser3le 10608 hashinfom 10849 hashennn 10851 cjval 10989 reval 10993 imval 10994 cvg1nlemcau 11128 cvg1nlemres 11129 absval 11145 resqrexlemglsq 11166 resqrexlemga 11167 climmpt 11443 climle 11477 climcvg1nlem 11492 summodclem3 11523 summodclem2a 11524 zsumdc 11527 fsum3 11530 fsumcl2lem 11541 sumsnf 11552 isumadd 11574 fsumrev 11586 fsumshft 11587 fsummulc2 11591 iserabs 11618 isumlessdc 11639 divcnv 11640 trireciplem 11643 trirecip 11644 expcnvap0 11645 expcnvre 11646 expcnv 11647 explecnv 11648 geolim 11654 geolim2 11655 geo2lim 11659 geoisum 11660 geoisumr 11661 geoisum1 11662 geoisum1c 11663 cvgratz 11675 mertenslem2 11679 mertensabs 11680 fprodmul 11734 eftvalcn 11800 efval 11804 efcvgfsum 11810 ege2le3 11814 efcj 11816 eftlub 11833 efgt1p2 11838 eflegeo 11844 sinval 11845 cosval 11846 tanvalap 11851 eirraplem 11920 phival 12351 crth 12362 phimullem 12363 ennnfonelemj0 12558 ennnfonelem0 12562 strnfvnd 12638 topnvalg 12862 tgval 12873 2idlval 13998 zrhval 14105 toponsspwpwg 14190 cldval 14267 ntrfval 14268 clsfval 14269 neifval 14308 neival 14311 ismet 14512 isxmet 14513 divcnap 14723 mulc1cncf 14744 djucllem 15292 nnsf 15495 peano3nninf 15497 nninfself 15503 nninfsellemeqinf 15506 dceqnconst 15550 dcapnconst 15551 |
Copyright terms: Public domain | W3C validator |