| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptg | GIF version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | eqeq2d 2218 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
| 4 | eqeq1 2213 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
| 5 | moeq 2949 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
| 7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 8 | df-mpt 4111 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
| 9 | 7, 8 | eqtri 2227 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
| 10 | 3, 4, 6, 9 | fvopab3ig 5660 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
| 11 | 1, 10 | mpi 15 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃*wmo 2056 ∈ wcel 2177 {copab 4108 ↦ cmpt 4109 ‘cfv 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 |
| This theorem is referenced by: fvmpt 5663 fvmpts 5664 fvmpt3 5665 fvmpt2 5670 f1mpt 5847 caofinvl 6191 1stvalg 6235 2ndvalg 6236 brtpos2 6344 rdgon 6479 frec0g 6490 freccllem 6495 frecfcllem 6497 frecsuclem 6499 sucinc 6538 sucinc2 6539 omcl 6554 oeicl 6555 oav2 6556 omv2 6558 fvdiagfn 6787 djulclr 7158 djurclr 7159 djulcl 7160 djurcl 7161 djulclb 7164 omp1eomlem 7203 ctmlemr 7217 nnnninf 7235 nnnninfeq 7237 cardval3ex 7299 ceilqval 10458 frec2uzzd 10552 frec2uzsucd 10553 monoord2 10638 iseqf1olemqval 10652 iseqf1olemqk 10659 seq3f1olemqsum 10665 seq3f1oleml 10668 seq3f1o 10669 seq3distr 10684 ser3le 10689 hashinfom 10930 hashennn 10932 cjval 11200 reval 11204 imval 11205 cvg1nlemcau 11339 cvg1nlemres 11340 absval 11356 resqrexlemglsq 11377 resqrexlemga 11378 climmpt 11655 climle 11689 climcvg1nlem 11704 summodclem3 11735 summodclem2a 11736 zsumdc 11739 fsum3 11742 fsumcl2lem 11753 sumsnf 11764 isumadd 11786 fsumrev 11798 fsumshft 11799 fsummulc2 11803 iserabs 11830 isumlessdc 11851 divcnv 11852 trireciplem 11855 trirecip 11856 expcnvap0 11857 expcnvre 11858 expcnv 11859 explecnv 11860 geolim 11866 geolim2 11867 geo2lim 11871 geoisum 11872 geoisumr 11873 geoisum1 11874 geoisum1c 11875 cvgratz 11887 mertenslem2 11891 mertensabs 11892 fprodmul 11946 eftvalcn 12012 efval 12016 efcvgfsum 12022 ege2le3 12026 efcj 12028 eftlub 12045 efgt1p2 12050 eflegeo 12056 sinval 12057 cosval 12058 tanvalap 12063 eirraplem 12132 phival 12579 crth 12590 phimullem 12591 ennnfonelemj0 12816 ennnfonelem0 12820 strnfvnd 12896 topnvalg 13127 tgval 13138 2idlval 14308 zrhval 14423 toponsspwpwg 14538 cldval 14615 ntrfval 14616 clsfval 14617 neifval 14656 neival 14659 ismet 14860 isxmet 14861 divcnap 15081 mulc1cncf 15105 djucllem 15810 nnsf 16016 peano3nninf 16018 nninfself 16024 nninfsellemeqinf 16027 dceqnconst 16073 dcapnconst 16074 |
| Copyright terms: Public domain | W3C validator |