| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptg | GIF version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2209 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | eqeq2d 2221 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
| 4 | eqeq1 2216 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
| 5 | moeq 2958 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
| 7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 8 | df-mpt 4126 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
| 9 | 7, 8 | eqtri 2230 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
| 10 | 3, 4, 6, 9 | fvopab3ig 5681 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
| 11 | 1, 10 | mpi 15 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∃*wmo 2058 ∈ wcel 2180 {copab 4123 ↦ cmpt 4124 ‘cfv 5294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 |
| This theorem is referenced by: fvmpt 5684 fvmpts 5685 fvmpt3 5686 fvmpt2 5691 f1mpt 5868 caofinvl 6214 1stvalg 6258 2ndvalg 6259 brtpos2 6367 rdgon 6502 frec0g 6513 freccllem 6518 frecfcllem 6520 frecsuclem 6522 sucinc 6561 sucinc2 6562 omcl 6577 oeicl 6578 oav2 6579 omv2 6581 fvdiagfn 6810 djulclr 7184 djurclr 7185 djulcl 7186 djurcl 7187 djulclb 7190 omp1eomlem 7229 ctmlemr 7243 nnnninf 7261 nnnninfeq 7263 cardval3ex 7325 ceilqval 10495 frec2uzzd 10589 frec2uzsucd 10590 monoord2 10675 iseqf1olemqval 10689 iseqf1olemqk 10696 seq3f1olemqsum 10702 seq3f1oleml 10705 seq3f1o 10706 seq3distr 10721 ser3le 10726 hashinfom 10967 hashennn 10969 cjval 11322 reval 11326 imval 11327 cvg1nlemcau 11461 cvg1nlemres 11462 absval 11478 resqrexlemglsq 11499 resqrexlemga 11500 climmpt 11777 climle 11811 climcvg1nlem 11826 summodclem3 11857 summodclem2a 11858 zsumdc 11861 fsum3 11864 fsumcl2lem 11875 sumsnf 11886 isumadd 11908 fsumrev 11920 fsumshft 11921 fsummulc2 11925 iserabs 11952 isumlessdc 11973 divcnv 11974 trireciplem 11977 trirecip 11978 expcnvap0 11979 expcnvre 11980 expcnv 11981 explecnv 11982 geolim 11988 geolim2 11989 geo2lim 11993 geoisum 11994 geoisumr 11995 geoisum1 11996 geoisum1c 11997 cvgratz 12009 mertenslem2 12013 mertensabs 12014 fprodmul 12068 eftvalcn 12134 efval 12138 efcvgfsum 12144 ege2le3 12148 efcj 12150 eftlub 12167 efgt1p2 12172 eflegeo 12178 sinval 12179 cosval 12180 tanvalap 12185 eirraplem 12254 phival 12701 crth 12712 phimullem 12713 ennnfonelemj0 12938 ennnfonelem0 12942 strnfvnd 13018 topnvalg 13250 tgval 13261 2idlval 14431 zrhval 14546 toponsspwpwg 14661 cldval 14738 ntrfval 14739 clsfval 14740 neifval 14779 neival 14782 ismet 14983 isxmet 14984 divcnap 15204 mulc1cncf 15228 djucllem 16074 nnsf 16282 peano3nninf 16284 nninfself 16290 nninfsellemeqinf 16293 dceqnconst 16339 dcapnconst 16340 |
| Copyright terms: Public domain | W3C validator |