![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvmptg | GIF version |
Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . 2 ⊢ 𝐶 = 𝐶 | |
2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | eqeq2d 2189 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
4 | eqeq1 2184 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
5 | moeq 2914 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
6 | 5 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
8 | df-mpt 4068 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
9 | 7, 8 | eqtri 2198 | . . 3 ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
10 | 3, 4, 6, 9 | fvopab3ig 5592 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
11 | 1, 10 | mpi 15 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∃*wmo 2027 ∈ wcel 2148 {copab 4065 ↦ cmpt 4066 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 |
This theorem is referenced by: fvmpt 5595 fvmpts 5596 fvmpt3 5597 fvmpt2 5601 f1mpt 5774 caofinvl 6107 1stvalg 6145 2ndvalg 6146 brtpos2 6254 rdgon 6389 frec0g 6400 freccllem 6405 frecfcllem 6407 frecsuclem 6409 sucinc 6448 sucinc2 6449 omcl 6464 oeicl 6465 oav2 6466 omv2 6468 fvdiagfn 6695 djulclr 7050 djurclr 7051 djulcl 7052 djurcl 7053 djulclb 7056 omp1eomlem 7095 ctmlemr 7109 nnnninf 7126 nnnninfeq 7128 cardval3ex 7186 ceilqval 10308 frec2uzzd 10402 frec2uzsucd 10403 monoord2 10479 iseqf1olemqval 10489 iseqf1olemqk 10496 seq3f1olemqsum 10502 seq3f1oleml 10505 seq3f1o 10506 seq3distr 10515 ser3le 10520 hashinfom 10760 hashennn 10762 cjval 10856 reval 10860 imval 10861 cvg1nlemcau 10995 cvg1nlemres 10996 absval 11012 resqrexlemglsq 11033 resqrexlemga 11034 climmpt 11310 climle 11344 climcvg1nlem 11359 summodclem3 11390 summodclem2a 11391 zsumdc 11394 fsum3 11397 fsumcl2lem 11408 sumsnf 11419 isumadd 11441 fsumrev 11453 fsumshft 11454 fsummulc2 11458 iserabs 11485 isumlessdc 11506 divcnv 11507 trireciplem 11510 trirecip 11511 expcnvap0 11512 expcnvre 11513 expcnv 11514 explecnv 11515 geolim 11521 geolim2 11522 geo2lim 11526 geoisum 11527 geoisumr 11528 geoisum1 11529 geoisum1c 11530 cvgratz 11542 mertenslem2 11546 mertensabs 11547 fprodmul 11601 eftvalcn 11667 efval 11671 efcvgfsum 11677 ege2le3 11681 efcj 11683 eftlub 11700 efgt1p2 11705 eflegeo 11711 sinval 11712 cosval 11713 tanvalap 11718 eirraplem 11786 phival 12215 crth 12226 phimullem 12227 ennnfonelemj0 12404 ennnfonelem0 12408 strnfvnd 12484 topnvalg 12705 tgval 12716 toponsspwpwg 13561 cldval 13638 ntrfval 13639 clsfval 13640 neifval 13679 neival 13682 ismet 13883 isxmet 13884 divcnap 14094 mulc1cncf 14115 djucllem 14591 nnsf 14793 peano3nninf 14795 nninfself 14801 nninfsellemeqinf 14804 dceqnconst 14846 dcapnconst 14847 |
Copyright terms: Public domain | W3C validator |