Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptg | GIF version |
Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . 2 ⊢ 𝐶 = 𝐶 | |
2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | eqeq2d 2182 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
4 | eqeq1 2177 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
5 | moeq 2905 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
6 | 5 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
8 | df-mpt 4052 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
9 | 7, 8 | eqtri 2191 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
10 | 3, 4, 6, 9 | fvopab3ig 5570 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
11 | 1, 10 | mpi 15 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∃*wmo 2020 ∈ wcel 2141 {copab 4049 ↦ cmpt 4050 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 |
This theorem is referenced by: fvmpt 5573 fvmpts 5574 fvmpt3 5575 fvmpt2 5579 f1mpt 5750 caofinvl 6083 1stvalg 6121 2ndvalg 6122 brtpos2 6230 rdgon 6365 frec0g 6376 freccllem 6381 frecfcllem 6383 frecsuclem 6385 sucinc 6424 sucinc2 6425 omcl 6440 oeicl 6441 oav2 6442 omv2 6444 fvdiagfn 6671 djulclr 7026 djurclr 7027 djulcl 7028 djurcl 7029 djulclb 7032 omp1eomlem 7071 ctmlemr 7085 nnnninf 7102 nnnninfeq 7104 cardval3ex 7162 ceilqval 10262 frec2uzzd 10356 frec2uzsucd 10357 monoord2 10433 iseqf1olemqval 10443 iseqf1olemqk 10450 seq3f1olemqsum 10456 seq3f1oleml 10459 seq3f1o 10460 seq3distr 10469 ser3le 10474 hashinfom 10712 hashennn 10714 cjval 10809 reval 10813 imval 10814 cvg1nlemcau 10948 cvg1nlemres 10949 absval 10965 resqrexlemglsq 10986 resqrexlemga 10987 climmpt 11263 climle 11297 climcvg1nlem 11312 summodclem3 11343 summodclem2a 11344 zsumdc 11347 fsum3 11350 fsumcl2lem 11361 sumsnf 11372 isumadd 11394 fsumrev 11406 fsumshft 11407 fsummulc2 11411 iserabs 11438 isumlessdc 11459 divcnv 11460 trireciplem 11463 trirecip 11464 expcnvap0 11465 expcnvre 11466 expcnv 11467 explecnv 11468 geolim 11474 geolim2 11475 geo2lim 11479 geoisum 11480 geoisumr 11481 geoisum1 11482 geoisum1c 11483 cvgratz 11495 mertenslem2 11499 mertensabs 11500 fprodmul 11554 eftvalcn 11620 efval 11624 efcvgfsum 11630 ege2le3 11634 efcj 11636 eftlub 11653 efgt1p2 11658 eflegeo 11664 sinval 11665 cosval 11666 tanvalap 11671 eirraplem 11739 phival 12167 crth 12178 phimullem 12179 ennnfonelemj0 12356 ennnfonelem0 12360 strnfvnd 12436 topnvalg 12591 toponsspwpwg 12814 tgval 12843 cldval 12893 ntrfval 12894 clsfval 12895 neifval 12934 neival 12937 ismet 13138 isxmet 13139 divcnap 13349 mulc1cncf 13370 djucllem 13835 nnsf 14038 peano3nninf 14040 nninfself 14046 nninfsellemeqinf 14049 dceqnconst 14091 dcapnconst 14092 |
Copyright terms: Public domain | W3C validator |