| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptg | GIF version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | eqeq2d 2208 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
| 4 | eqeq1 2203 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
| 5 | moeq 2939 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
| 7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 8 | df-mpt 4097 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
| 9 | 7, 8 | eqtri 2217 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
| 10 | 3, 4, 6, 9 | fvopab3ig 5638 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
| 11 | 1, 10 | mpi 15 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃*wmo 2046 ∈ wcel 2167 {copab 4094 ↦ cmpt 4095 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 |
| This theorem is referenced by: fvmpt 5641 fvmpts 5642 fvmpt3 5643 fvmpt2 5648 f1mpt 5821 caofinvl 6165 1stvalg 6209 2ndvalg 6210 brtpos2 6318 rdgon 6453 frec0g 6464 freccllem 6469 frecfcllem 6471 frecsuclem 6473 sucinc 6512 sucinc2 6513 omcl 6528 oeicl 6529 oav2 6530 omv2 6532 fvdiagfn 6761 djulclr 7124 djurclr 7125 djulcl 7126 djurcl 7127 djulclb 7130 omp1eomlem 7169 ctmlemr 7183 nnnninf 7201 nnnninfeq 7203 cardval3ex 7263 ceilqval 10415 frec2uzzd 10509 frec2uzsucd 10510 monoord2 10595 iseqf1olemqval 10609 iseqf1olemqk 10616 seq3f1olemqsum 10622 seq3f1oleml 10625 seq3f1o 10626 seq3distr 10641 ser3le 10646 hashinfom 10887 hashennn 10889 cjval 11027 reval 11031 imval 11032 cvg1nlemcau 11166 cvg1nlemres 11167 absval 11183 resqrexlemglsq 11204 resqrexlemga 11205 climmpt 11482 climle 11516 climcvg1nlem 11531 summodclem3 11562 summodclem2a 11563 zsumdc 11566 fsum3 11569 fsumcl2lem 11580 sumsnf 11591 isumadd 11613 fsumrev 11625 fsumshft 11626 fsummulc2 11630 iserabs 11657 isumlessdc 11678 divcnv 11679 trireciplem 11682 trirecip 11683 expcnvap0 11684 expcnvre 11685 expcnv 11686 explecnv 11687 geolim 11693 geolim2 11694 geo2lim 11698 geoisum 11699 geoisumr 11700 geoisum1 11701 geoisum1c 11702 cvgratz 11714 mertenslem2 11718 mertensabs 11719 fprodmul 11773 eftvalcn 11839 efval 11843 efcvgfsum 11849 ege2le3 11853 efcj 11855 eftlub 11872 efgt1p2 11877 eflegeo 11883 sinval 11884 cosval 11885 tanvalap 11890 eirraplem 11959 phival 12406 crth 12417 phimullem 12418 ennnfonelemj0 12643 ennnfonelem0 12647 strnfvnd 12723 topnvalg 12953 tgval 12964 2idlval 14134 zrhval 14249 toponsspwpwg 14342 cldval 14419 ntrfval 14420 clsfval 14421 neifval 14460 neival 14463 ismet 14664 isxmet 14665 divcnap 14885 mulc1cncf 14909 djucllem 15530 nnsf 15736 peano3nninf 15738 nninfself 15744 nninfsellemeqinf 15747 dceqnconst 15791 dcapnconst 15792 |
| Copyright terms: Public domain | W3C validator |