| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptg | GIF version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | eqeq2d 2241 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
| 4 | eqeq1 2236 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
| 5 | moeq 2978 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
| 7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 8 | df-mpt 4147 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
| 9 | 7, 8 | eqtri 2250 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
| 10 | 3, 4, 6, 9 | fvopab3ig 5710 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
| 11 | 1, 10 | mpi 15 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∃*wmo 2078 ∈ wcel 2200 {copab 4144 ↦ cmpt 4145 ‘cfv 5318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 |
| This theorem is referenced by: fvmpt 5713 fvmpts 5714 fvmpt3 5715 fvmpt2 5720 f1mpt 5901 caofinvl 6250 1stvalg 6294 2ndvalg 6295 brtpos2 6403 rdgon 6538 frec0g 6549 freccllem 6554 frecfcllem 6556 frecsuclem 6558 sucinc 6599 sucinc2 6600 omcl 6615 oeicl 6616 oav2 6617 omv2 6619 fvdiagfn 6848 djulclr 7224 djurclr 7225 djulcl 7226 djurcl 7227 djulclb 7230 omp1eomlem 7269 ctmlemr 7283 nnnninf 7301 nnnninfeq 7303 cardval3ex 7365 ceilqval 10536 frec2uzzd 10630 frec2uzsucd 10631 monoord2 10716 iseqf1olemqval 10730 iseqf1olemqk 10737 seq3f1olemqsum 10743 seq3f1oleml 10746 seq3f1o 10747 seq3distr 10762 ser3le 10767 hashinfom 11008 hashennn 11010 cjval 11364 reval 11368 imval 11369 cvg1nlemcau 11503 cvg1nlemres 11504 absval 11520 resqrexlemglsq 11541 resqrexlemga 11542 climmpt 11819 climle 11853 climcvg1nlem 11868 summodclem3 11899 summodclem2a 11900 zsumdc 11903 fsum3 11906 fsumcl2lem 11917 sumsnf 11928 isumadd 11950 fsumrev 11962 fsumshft 11963 fsummulc2 11967 iserabs 11994 isumlessdc 12015 divcnv 12016 trireciplem 12019 trirecip 12020 expcnvap0 12021 expcnvre 12022 expcnv 12023 explecnv 12024 geolim 12030 geolim2 12031 geo2lim 12035 geoisum 12036 geoisumr 12037 geoisum1 12038 geoisum1c 12039 cvgratz 12051 mertenslem2 12055 mertensabs 12056 fprodmul 12110 eftvalcn 12176 efval 12180 efcvgfsum 12186 ege2le3 12190 efcj 12192 eftlub 12209 efgt1p2 12214 eflegeo 12220 sinval 12221 cosval 12222 tanvalap 12227 eirraplem 12296 phival 12743 crth 12754 phimullem 12755 ennnfonelemj0 12980 ennnfonelem0 12984 strnfvnd 13060 topnvalg 13292 tgval 13303 2idlval 14474 zrhval 14589 toponsspwpwg 14704 cldval 14781 ntrfval 14782 clsfval 14783 neifval 14822 neival 14825 ismet 15026 isxmet 15027 divcnap 15247 mulc1cncf 15271 djucllem 16188 nnsf 16401 peano3nninf 16403 nninfself 16409 nninfsellemeqinf 16412 dceqnconst 16458 dcapnconst 16459 |
| Copyright terms: Public domain | W3C validator |