| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptg | GIF version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | eqeq2d 2208 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
| 4 | eqeq1 2203 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
| 5 | moeq 2939 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
| 7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 8 | df-mpt 4097 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
| 9 | 7, 8 | eqtri 2217 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
| 10 | 3, 4, 6, 9 | fvopab3ig 5638 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
| 11 | 1, 10 | mpi 15 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃*wmo 2046 ∈ wcel 2167 {copab 4094 ↦ cmpt 4095 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 |
| This theorem is referenced by: fvmpt 5641 fvmpts 5642 fvmpt3 5643 fvmpt2 5648 f1mpt 5821 caofinvl 6164 1stvalg 6204 2ndvalg 6205 brtpos2 6313 rdgon 6448 frec0g 6459 freccllem 6464 frecfcllem 6466 frecsuclem 6468 sucinc 6507 sucinc2 6508 omcl 6523 oeicl 6524 oav2 6525 omv2 6527 fvdiagfn 6756 djulclr 7119 djurclr 7120 djulcl 7121 djurcl 7122 djulclb 7125 omp1eomlem 7164 ctmlemr 7178 nnnninf 7196 nnnninfeq 7198 cardval3ex 7256 ceilqval 10403 frec2uzzd 10497 frec2uzsucd 10498 monoord2 10583 iseqf1olemqval 10597 iseqf1olemqk 10604 seq3f1olemqsum 10610 seq3f1oleml 10613 seq3f1o 10614 seq3distr 10629 ser3le 10634 hashinfom 10875 hashennn 10877 cjval 11015 reval 11019 imval 11020 cvg1nlemcau 11154 cvg1nlemres 11155 absval 11171 resqrexlemglsq 11192 resqrexlemga 11193 climmpt 11470 climle 11504 climcvg1nlem 11519 summodclem3 11550 summodclem2a 11551 zsumdc 11554 fsum3 11557 fsumcl2lem 11568 sumsnf 11579 isumadd 11601 fsumrev 11613 fsumshft 11614 fsummulc2 11618 iserabs 11645 isumlessdc 11666 divcnv 11667 trireciplem 11670 trirecip 11671 expcnvap0 11672 expcnvre 11673 expcnv 11674 explecnv 11675 geolim 11681 geolim2 11682 geo2lim 11686 geoisum 11687 geoisumr 11688 geoisum1 11689 geoisum1c 11690 cvgratz 11702 mertenslem2 11706 mertensabs 11707 fprodmul 11761 eftvalcn 11827 efval 11831 efcvgfsum 11837 ege2le3 11841 efcj 11843 eftlub 11860 efgt1p2 11865 eflegeo 11871 sinval 11872 cosval 11873 tanvalap 11878 eirraplem 11947 phival 12394 crth 12405 phimullem 12406 ennnfonelemj0 12631 ennnfonelem0 12635 strnfvnd 12711 topnvalg 12941 tgval 12952 2idlval 14105 zrhval 14220 toponsspwpwg 14305 cldval 14382 ntrfval 14383 clsfval 14384 neifval 14423 neival 14426 ismet 14627 isxmet 14628 divcnap 14848 mulc1cncf 14872 djucllem 15493 nnsf 15699 peano3nninf 15701 nninfself 15707 nninfsellemeqinf 15710 dceqnconst 15754 dcapnconst 15755 |
| Copyright terms: Public domain | W3C validator |