| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptg | GIF version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | eqeq2d 2208 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
| 4 | eqeq1 2203 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
| 5 | moeq 2939 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
| 7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 8 | df-mpt 4097 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
| 9 | 7, 8 | eqtri 2217 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
| 10 | 3, 4, 6, 9 | fvopab3ig 5638 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
| 11 | 1, 10 | mpi 15 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃*wmo 2046 ∈ wcel 2167 {copab 4094 ↦ cmpt 4095 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 |
| This theorem is referenced by: fvmpt 5641 fvmpts 5642 fvmpt3 5643 fvmpt2 5648 f1mpt 5821 caofinvl 6165 1stvalg 6209 2ndvalg 6210 brtpos2 6318 rdgon 6453 frec0g 6464 freccllem 6469 frecfcllem 6471 frecsuclem 6473 sucinc 6512 sucinc2 6513 omcl 6528 oeicl 6529 oav2 6530 omv2 6532 fvdiagfn 6761 djulclr 7124 djurclr 7125 djulcl 7126 djurcl 7127 djulclb 7130 omp1eomlem 7169 ctmlemr 7183 nnnninf 7201 nnnninfeq 7203 cardval3ex 7265 ceilqval 10417 frec2uzzd 10511 frec2uzsucd 10512 monoord2 10597 iseqf1olemqval 10611 iseqf1olemqk 10618 seq3f1olemqsum 10624 seq3f1oleml 10627 seq3f1o 10628 seq3distr 10643 ser3le 10648 hashinfom 10889 hashennn 10891 cjval 11029 reval 11033 imval 11034 cvg1nlemcau 11168 cvg1nlemres 11169 absval 11185 resqrexlemglsq 11206 resqrexlemga 11207 climmpt 11484 climle 11518 climcvg1nlem 11533 summodclem3 11564 summodclem2a 11565 zsumdc 11568 fsum3 11571 fsumcl2lem 11582 sumsnf 11593 isumadd 11615 fsumrev 11627 fsumshft 11628 fsummulc2 11632 iserabs 11659 isumlessdc 11680 divcnv 11681 trireciplem 11684 trirecip 11685 expcnvap0 11686 expcnvre 11687 expcnv 11688 explecnv 11689 geolim 11695 geolim2 11696 geo2lim 11700 geoisum 11701 geoisumr 11702 geoisum1 11703 geoisum1c 11704 cvgratz 11716 mertenslem2 11720 mertensabs 11721 fprodmul 11775 eftvalcn 11841 efval 11845 efcvgfsum 11851 ege2le3 11855 efcj 11857 eftlub 11874 efgt1p2 11879 eflegeo 11885 sinval 11886 cosval 11887 tanvalap 11892 eirraplem 11961 phival 12408 crth 12419 phimullem 12420 ennnfonelemj0 12645 ennnfonelem0 12649 strnfvnd 12725 topnvalg 12955 tgval 12966 2idlval 14136 zrhval 14251 toponsspwpwg 14366 cldval 14443 ntrfval 14444 clsfval 14445 neifval 14484 neival 14487 ismet 14688 isxmet 14689 divcnap 14909 mulc1cncf 14933 djucllem 15554 nnsf 15760 peano3nninf 15762 nninfself 15768 nninfsellemeqinf 15771 dceqnconst 15817 dcapnconst 15818 |
| Copyright terms: Public domain | W3C validator |