Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptg | GIF version |
Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . 2 ⊢ 𝐶 = 𝐶 | |
2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | eqeq2d 2177 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
4 | eqeq1 2172 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
5 | moeq 2901 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
6 | 5 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
8 | df-mpt 4045 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
9 | 7, 8 | eqtri 2186 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
10 | 3, 4, 6, 9 | fvopab3ig 5560 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
11 | 1, 10 | mpi 15 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∃*wmo 2015 ∈ wcel 2136 {copab 4042 ↦ cmpt 4043 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 |
This theorem is referenced by: fvmpt 5563 fvmpts 5564 fvmpt3 5565 fvmpt2 5569 f1mpt 5739 caofinvl 6072 1stvalg 6110 2ndvalg 6111 brtpos2 6219 rdgon 6354 frec0g 6365 freccllem 6370 frecfcllem 6372 frecsuclem 6374 sucinc 6413 sucinc2 6414 omcl 6429 oeicl 6430 oav2 6431 omv2 6433 fvdiagfn 6659 djulclr 7014 djurclr 7015 djulcl 7016 djurcl 7017 djulclb 7020 omp1eomlem 7059 ctmlemr 7073 nnnninf 7090 nnnninfeq 7092 cardval3ex 7141 ceilqval 10241 frec2uzzd 10335 frec2uzsucd 10336 monoord2 10412 iseqf1olemqval 10422 iseqf1olemqk 10429 seq3f1olemqsum 10435 seq3f1oleml 10438 seq3f1o 10439 seq3distr 10448 ser3le 10453 hashinfom 10691 hashennn 10693 cjval 10787 reval 10791 imval 10792 cvg1nlemcau 10926 cvg1nlemres 10927 absval 10943 resqrexlemglsq 10964 resqrexlemga 10965 climmpt 11241 climle 11275 climcvg1nlem 11290 summodclem3 11321 summodclem2a 11322 zsumdc 11325 fsum3 11328 fsumcl2lem 11339 sumsnf 11350 isumadd 11372 fsumrev 11384 fsumshft 11385 fsummulc2 11389 iserabs 11416 isumlessdc 11437 divcnv 11438 trireciplem 11441 trirecip 11442 expcnvap0 11443 expcnvre 11444 expcnv 11445 explecnv 11446 geolim 11452 geolim2 11453 geo2lim 11457 geoisum 11458 geoisumr 11459 geoisum1 11460 geoisum1c 11461 cvgratz 11473 mertenslem2 11477 mertensabs 11478 fprodmul 11532 eftvalcn 11598 efval 11602 efcvgfsum 11608 ege2le3 11612 efcj 11614 eftlub 11631 efgt1p2 11636 eflegeo 11642 sinval 11643 cosval 11644 tanvalap 11649 eirraplem 11717 phival 12145 crth 12156 phimullem 12157 ennnfonelemj0 12334 ennnfonelem0 12338 strnfvnd 12414 topnvalg 12568 toponsspwpwg 12660 tgval 12689 cldval 12739 ntrfval 12740 clsfval 12741 neifval 12780 neival 12783 ismet 12984 isxmet 12985 divcnap 13195 mulc1cncf 13216 djucllem 13681 nnsf 13885 peano3nninf 13887 nninfself 13893 nninfsellemeqinf 13896 dceqnconst 13938 dcapnconst 13939 |
Copyright terms: Public domain | W3C validator |