![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvmptg | GIF version |
Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptg | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . 2 ⊢ 𝐶 = 𝐶 | |
2 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | eqeq2d 2205 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
4 | eqeq1 2200 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐶 ↔ 𝐶 = 𝐶)) | |
5 | moeq 2936 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
6 | 5 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ∃*𝑦 𝑦 = 𝐵) |
7 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
8 | df-mpt 4093 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} | |
9 | 7, 8 | eqtri 2214 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵)} |
10 | 3, 4, 6, 9 | fvopab3ig 5632 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐶 = 𝐶 → (𝐹‘𝐴) = 𝐶)) |
11 | 1, 10 | mpi 15 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃*wmo 2043 ∈ wcel 2164 {copab 4090 ↦ cmpt 4091 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 |
This theorem is referenced by: fvmpt 5635 fvmpts 5636 fvmpt3 5637 fvmpt2 5642 f1mpt 5815 caofinvl 6157 1stvalg 6197 2ndvalg 6198 brtpos2 6306 rdgon 6441 frec0g 6452 freccllem 6457 frecfcllem 6459 frecsuclem 6461 sucinc 6500 sucinc2 6501 omcl 6516 oeicl 6517 oav2 6518 omv2 6520 fvdiagfn 6749 djulclr 7110 djurclr 7111 djulcl 7112 djurcl 7113 djulclb 7116 omp1eomlem 7155 ctmlemr 7169 nnnninf 7187 nnnninfeq 7189 cardval3ex 7247 ceilqval 10380 frec2uzzd 10474 frec2uzsucd 10475 monoord2 10560 iseqf1olemqval 10574 iseqf1olemqk 10581 seq3f1olemqsum 10587 seq3f1oleml 10590 seq3f1o 10591 seq3distr 10606 ser3le 10611 hashinfom 10852 hashennn 10854 cjval 10992 reval 10996 imval 10997 cvg1nlemcau 11131 cvg1nlemres 11132 absval 11148 resqrexlemglsq 11169 resqrexlemga 11170 climmpt 11446 climle 11480 climcvg1nlem 11495 summodclem3 11526 summodclem2a 11527 zsumdc 11530 fsum3 11533 fsumcl2lem 11544 sumsnf 11555 isumadd 11577 fsumrev 11589 fsumshft 11590 fsummulc2 11594 iserabs 11621 isumlessdc 11642 divcnv 11643 trireciplem 11646 trirecip 11647 expcnvap0 11648 expcnvre 11649 expcnv 11650 explecnv 11651 geolim 11657 geolim2 11658 geo2lim 11662 geoisum 11663 geoisumr 11664 geoisum1 11665 geoisum1c 11666 cvgratz 11678 mertenslem2 11682 mertensabs 11683 fprodmul 11737 eftvalcn 11803 efval 11807 efcvgfsum 11813 ege2le3 11817 efcj 11819 eftlub 11836 efgt1p2 11841 eflegeo 11847 sinval 11848 cosval 11849 tanvalap 11854 eirraplem 11923 phival 12354 crth 12365 phimullem 12366 ennnfonelemj0 12561 ennnfonelem0 12565 strnfvnd 12641 topnvalg 12865 tgval 12876 2idlval 14001 zrhval 14116 toponsspwpwg 14201 cldval 14278 ntrfval 14279 clsfval 14280 neifval 14319 neival 14322 ismet 14523 isxmet 14524 divcnap 14744 mulc1cncf 14768 djucllem 15362 nnsf 15565 peano3nninf 15567 nninfself 15573 nninfsellemeqinf 15576 dceqnconst 15620 dcapnconst 15621 |
Copyright terms: Public domain | W3C validator |