ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2 GIF version

Theorem reseq2 4884
Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.)
Assertion
Ref Expression
reseq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem reseq2
StepHypRef Expression
1 xpeq1 4623 . . 3 (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V))
21ineq2d 3328 . 2 (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V)))
3 df-res 4621 . 2 (𝐶𝐴) = (𝐶 ∩ (𝐴 × V))
4 df-res 4621 . 2 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
52, 3, 43eqtr4g 2228 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  Vcvv 2730  cin 3120   × cxp 4607  cres 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-opab 4049  df-xp 4615  df-res 4621
This theorem is referenced by:  reseq2i  4886  reseq2d  4889  resabs1  4918  resima2  4923  imaeq2  4947  resdisj  5037  relcoi1  5140  fressnfv  5681  tfrlem1  6285  tfrlem9  6296  tfr0dm  6299  tfrlemisucaccv  6302  tfrlemiubacc  6307  tfr1onlemsucaccv  6318  tfr1onlemubacc  6323  tfr1onlemaccex  6325  tfrcllemsucaccv  6331  tfrcllembxssdm  6333  tfrcllemubacc  6336  tfrcllemaccex  6338  tfrcllemres  6339  tfrcldm  6340  fnfi  6911  lmbr2  12969  lmff  13004
  Copyright terms: Public domain W3C validator