ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2 GIF version

Theorem reseq2 4937
Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.)
Assertion
Ref Expression
reseq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem reseq2
StepHypRef Expression
1 xpeq1 4673 . . 3 (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V))
21ineq2d 3360 . 2 (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V)))
3 df-res 4671 . 2 (𝐶𝐴) = (𝐶 ∩ (𝐴 × V))
4 df-res 4671 . 2 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
52, 3, 43eqtr4g 2251 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  Vcvv 2760  cin 3152   × cxp 4657  cres 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-opab 4091  df-xp 4665  df-res 4671
This theorem is referenced by:  reseq2i  4939  reseq2d  4942  resabs1  4971  resima2  4976  imaeq2  5001  resdisj  5094  relcoi1  5197  fressnfv  5745  tfrlem1  6361  tfrlem9  6372  tfr0dm  6375  tfrlemisucaccv  6378  tfrlemiubacc  6383  tfr1onlemsucaccv  6394  tfr1onlemubacc  6399  tfr1onlemaccex  6401  tfrcllemsucaccv  6407  tfrcllembxssdm  6409  tfrcllemubacc  6412  tfrcllemaccex  6414  tfrcllemres  6415  tfrcldm  6416  fnfi  6995  lmbr2  14382  lmff  14417
  Copyright terms: Public domain W3C validator