Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq2 | GIF version |
Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
Ref | Expression |
---|---|
reseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 4625 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V)) | |
2 | 1 | ineq2d 3328 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V))) |
3 | df-res 4623 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
4 | df-res 4623 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
5 | 2, 3, 4 | 3eqtr4g 2228 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 Vcvv 2730 ∩ cin 3120 × cxp 4609 ↾ cres 4613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-opab 4051 df-xp 4617 df-res 4623 |
This theorem is referenced by: reseq2i 4888 reseq2d 4891 resabs1 4920 resima2 4925 imaeq2 4949 resdisj 5039 relcoi1 5142 fressnfv 5683 tfrlem1 6287 tfrlem9 6298 tfr0dm 6301 tfrlemisucaccv 6304 tfrlemiubacc 6309 tfr1onlemsucaccv 6320 tfr1onlemubacc 6325 tfr1onlemaccex 6327 tfrcllemsucaccv 6333 tfrcllembxssdm 6335 tfrcllemubacc 6338 tfrcllemaccex 6340 tfrcllemres 6341 tfrcldm 6342 fnfi 6914 lmbr2 13008 lmff 13043 |
Copyright terms: Public domain | W3C validator |