Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq2 | GIF version |
Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
Ref | Expression |
---|---|
reseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 4618 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V)) | |
2 | 1 | ineq2d 3323 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V))) |
3 | df-res 4616 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
4 | df-res 4616 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
5 | 2, 3, 4 | 3eqtr4g 2224 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 Vcvv 2726 ∩ cin 3115 × cxp 4602 ↾ cres 4606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-opab 4044 df-xp 4610 df-res 4616 |
This theorem is referenced by: reseq2i 4881 reseq2d 4884 resabs1 4913 resima2 4918 imaeq2 4942 resdisj 5032 relcoi1 5135 fressnfv 5672 tfrlem1 6276 tfrlem9 6287 tfr0dm 6290 tfrlemisucaccv 6293 tfrlemiubacc 6298 tfr1onlemsucaccv 6309 tfr1onlemubacc 6314 tfr1onlemaccex 6316 tfrcllemsucaccv 6322 tfrcllembxssdm 6324 tfrcllemubacc 6327 tfrcllemaccex 6329 tfrcllemres 6330 tfrcldm 6331 fnfi 6902 lmbr2 12864 lmff 12899 |
Copyright terms: Public domain | W3C validator |