| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resres | GIF version | ||
| Description: The restriction of a restriction. (Contributed by NM, 27-Mar-2008.) |
| Ref | Expression |
|---|---|
| resres | ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4695 | . 2 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐵) ∩ (𝐶 × V)) | |
| 2 | df-res 4695 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 3 | 2 | ineq1i 3374 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) |
| 4 | xpindir 4822 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) × V) = ((𝐵 × V) ∩ (𝐶 × V)) | |
| 5 | 4 | ineq2i 3375 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) |
| 6 | df-res 4695 | . . 3 ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) | |
| 7 | inass 3387 | . . 3 ⊢ ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) | |
| 8 | 5, 6, 7 | 3eqtr4ri 2238 | . 2 ⊢ ((𝐴 ∩ (𝐵 × V)) ∩ (𝐶 × V)) = (𝐴 ↾ (𝐵 ∩ 𝐶)) |
| 9 | 1, 3, 8 | 3eqtri 2231 | 1 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 Vcvv 2773 ∩ cin 3169 × cxp 4681 ↾ cres 4685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-opab 4114 df-xp 4689 df-rel 4690 df-res 4695 |
| This theorem is referenced by: rescom 4993 resabs1 4997 resima2 5002 resmpt3 5017 resdisj 5120 rescnvcnv 5154 funimaexg 5367 fresin 5466 resdif 5556 pmresg 6776 setsslid 12958 |
| Copyright terms: Public domain | W3C validator |