ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpo GIF version

Theorem fnmpo 6205
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypothesis
Ref Expression
fmpo.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
fnmpo (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem fnmpo
StepHypRef Expression
1 elex 2750 . . . 4 (𝐶𝑉𝐶 ∈ V)
21ralimi 2540 . . 3 (∀𝑦𝐵 𝐶𝑉 → ∀𝑦𝐵 𝐶 ∈ V)
32ralimi 2540 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ∀𝑥𝐴𝑦𝐵 𝐶 ∈ V)
4 fmpo.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
54fmpo 6204 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶 ∈ V ↔ 𝐹:(𝐴 × 𝐵)⟶V)
6 dffn2 5369 . . 3 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶V)
75, 6bitr4i 187 . 2 (∀𝑥𝐴𝑦𝐵 𝐶 ∈ V ↔ 𝐹 Fn (𝐴 × 𝐵))
83, 7sylib 122 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  wral 2455  Vcvv 2739   × cxp 4626   Fn wfn 5213  wf 5214  cmpo 5879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144
This theorem is referenced by:  fnmpoi  6207  dmmpoga  6211  fnmpoovd  6218  f1od2  6238  divfnzn  9623  cnref1o  9652  plusffng  12789  mulgfng  12992  scaffng  13404  hmeofn  13841
  Copyright terms: Public domain W3C validator