ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpo GIF version

Theorem fnmpo 6228
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypothesis
Ref Expression
fmpo.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
fnmpo (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem fnmpo
StepHypRef Expression
1 elex 2763 . . . 4 (𝐶𝑉𝐶 ∈ V)
21ralimi 2553 . . 3 (∀𝑦𝐵 𝐶𝑉 → ∀𝑦𝐵 𝐶 ∈ V)
32ralimi 2553 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ∀𝑥𝐴𝑦𝐵 𝐶 ∈ V)
4 fmpo.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
54fmpo 6227 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶 ∈ V ↔ 𝐹:(𝐴 × 𝐵)⟶V)
6 dffn2 5386 . . 3 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶V)
75, 6bitr4i 187 . 2 (∀𝑥𝐴𝑦𝐵 𝐶 ∈ V ↔ 𝐹 Fn (𝐴 × 𝐵))
83, 7sylib 122 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  wral 2468  Vcvv 2752   × cxp 4642   Fn wfn 5230  wf 5231  cmpo 5899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167
This theorem is referenced by:  fnmpoi  6230  dmmpoga  6234  fnmpoovd  6241  f1od2  6261  divfnzn  9653  cnref1o  9682  plusffng  12844  mulgfng  13081  rhmfn  13539  scaffng  13642  hmeofn  14279
  Copyright terms: Public domain W3C validator