| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffnd | GIF version | ||
| Description: A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| ffnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| ffnd | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5469 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 5309 ⟶wf 5310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5318 |
| This theorem is referenced by: offeq 6222 caofid0l 6235 caofid0r 6236 caofid1 6237 caofid2 6238 difinfsn 7255 ctssdc 7268 nnnninfeq 7283 nninfdcinf 7326 nninfwlporlemd 7327 nninfwlporlem 7328 ofnegsub 9097 seqvalcd 10670 seq3feq2 10685 seq3feq 10689 seqf1oglem2 10729 seqfeq3 10738 ser0f 10743 facnn 10936 fac0 10937 resunimafz0 11040 wrdfn 11073 swrdvalfn 11174 pfxfn 11201 pfxid 11204 cats1un 11239 seq3shft 11335 fisumss 11889 prodf1f 12040 efcvgfsum 12164 nninfctlemfo 12547 ennnfonelemfun 12974 ennnfonelemf1 12975 prdsplusgsgrpcl 13433 prdssgrpd 13434 prdsplusgcl 13465 prdsidlem 13466 prdsmndd 13467 mhmf1o 13489 resmhm2b 13508 mhmima 13510 mhmeql 13511 gsumwmhm 13517 grpinvf1o 13589 prdsinvlem 13627 ghmrn 13780 ghmpreima 13789 ghmeql 13790 ghmnsgima 13791 ghmnsgpreima 13792 ghmeqker 13794 ghmf1o 13798 gsumfzmptfidmadd 13862 rhmf1o 14117 rnrhmsubrg 14201 psrbaglesuppg 14621 mplsubgfilemcl 14648 cnrest2 14895 lmss 14905 lmtopcnp 14909 upxp 14931 uptx 14933 cnmpt11 14942 cnmpt21 14950 cnmpt22f 14954 cnmptcom 14957 hmeof1o2 14967 psmetxrge0 14991 isxmet2d 15007 blelrnps 15078 blelrn 15079 xmetresbl 15099 comet 15158 bdxmet 15160 xmettx 15169 dvidlemap 15350 dvidrelem 15351 dvidsslem 15352 dvaddxxbr 15360 dvmulxxbr 15361 dvrecap 15372 plyaddlem1 15406 upgredg 15927 nninfall 16306 nninfsellemeqinf 16313 nninffeq 16317 nnnninfex 16319 nninfnfiinf 16320 refeq 16327 |
| Copyright terms: Public domain | W3C validator |