Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ffnd | GIF version |
Description: A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
ffnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
ffnd | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 5337 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fn wfn 5183 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-f 5192 |
This theorem is referenced by: offeq 6063 difinfsn 7065 ctssdc 7078 nnnninfeq 7092 seqvalcd 10394 seq3feq2 10405 seq3feq 10407 seqfeq3 10447 ser0f 10450 facnn 10640 fac0 10641 resunimafz0 10744 seq3shft 10780 fisumss 11333 prodf1f 11484 efcvgfsum 11608 ennnfonelemfun 12350 ennnfonelemf1 12351 cnrest2 12876 lmss 12886 lmtopcnp 12890 upxp 12912 uptx 12914 cnmpt11 12923 cnmpt21 12931 cnmpt22f 12935 cnmptcom 12938 hmeof1o2 12948 psmetxrge0 12972 isxmet2d 12988 blelrnps 13059 blelrn 13060 xmetresbl 13080 comet 13139 bdxmet 13141 xmettx 13150 dvidlemap 13300 dvaddxxbr 13305 dvmulxxbr 13306 dvrecap 13317 nninfall 13889 nninfsellemeqinf 13896 nninffeq 13900 refeq 13907 |
Copyright terms: Public domain | W3C validator |