![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ffnd | GIF version |
Description: A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
ffnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
ffnd | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 5404 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fn wfn 5250 ⟶wf 5251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-f 5259 |
This theorem is referenced by: offeq 6146 difinfsn 7161 ctssdc 7174 nnnninfeq 7189 nninfdcinf 7232 nninfwlporlemd 7233 nninfwlporlem 7234 ofnegsub 8983 seqvalcd 10535 seq3feq2 10550 seq3feq 10554 seqf1oglem2 10594 seqfeq3 10603 ser0f 10608 facnn 10801 fac0 10802 resunimafz0 10905 wrdfn 10932 seq3shft 10985 fisumss 11538 prodf1f 11689 efcvgfsum 11813 nninfctlemfo 12180 ennnfonelemfun 12577 ennnfonelemf1 12578 mhmf1o 13045 resmhm2b 13064 mhmima 13066 mhmeql 13067 gsumwmhm 13073 grpinvf1o 13145 ghmrn 13330 ghmpreima 13339 ghmeql 13340 ghmnsgima 13341 ghmnsgpreima 13342 ghmeqker 13344 ghmf1o 13348 gsumfzmptfidmadd 13412 rhmf1o 13667 rnrhmsubrg 13751 psrbaglesuppg 14169 cnrest2 14415 lmss 14425 lmtopcnp 14429 upxp 14451 uptx 14453 cnmpt11 14462 cnmpt21 14470 cnmpt22f 14474 cnmptcom 14477 hmeof1o2 14487 psmetxrge0 14511 isxmet2d 14527 blelrnps 14598 blelrn 14599 xmetresbl 14619 comet 14678 bdxmet 14680 xmettx 14689 dvidlemap 14870 dvidrelem 14871 dvidsslem 14872 dvaddxxbr 14880 dvmulxxbr 14881 dvrecap 14892 plyaddlem1 14926 nninfall 15569 nninfsellemeqinf 15576 nninffeq 15580 refeq 15588 |
Copyright terms: Public domain | W3C validator |