| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffnd | GIF version | ||
| Description: A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| ffnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| ffnd | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5432 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 5272 ⟶wf 5273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5281 |
| This theorem is referenced by: offeq 6182 caofid0l 6195 caofid0r 6196 caofid1 6197 caofid2 6198 difinfsn 7214 ctssdc 7227 nnnninfeq 7242 nninfdcinf 7285 nninfwlporlemd 7286 nninfwlporlem 7287 ofnegsub 9048 seqvalcd 10619 seq3feq2 10634 seq3feq 10638 seqf1oglem2 10678 seqfeq3 10687 ser0f 10692 facnn 10885 fac0 10886 resunimafz0 10989 wrdfn 11022 swrdvalfn 11123 pfxfn 11148 pfxid 11151 seq3shft 11199 fisumss 11753 prodf1f 11904 efcvgfsum 12028 nninfctlemfo 12411 ennnfonelemfun 12838 ennnfonelemf1 12839 prdsplusgsgrpcl 13296 prdssgrpd 13297 prdsplusgcl 13328 prdsidlem 13329 prdsmndd 13330 mhmf1o 13352 resmhm2b 13371 mhmima 13373 mhmeql 13374 gsumwmhm 13380 grpinvf1o 13452 prdsinvlem 13490 ghmrn 13643 ghmpreima 13652 ghmeql 13653 ghmnsgima 13654 ghmnsgpreima 13655 ghmeqker 13657 ghmf1o 13661 gsumfzmptfidmadd 13725 rhmf1o 13980 rnrhmsubrg 14064 psrbaglesuppg 14484 mplsubgfilemcl 14511 cnrest2 14758 lmss 14768 lmtopcnp 14772 upxp 14794 uptx 14796 cnmpt11 14805 cnmpt21 14813 cnmpt22f 14817 cnmptcom 14820 hmeof1o2 14830 psmetxrge0 14854 isxmet2d 14870 blelrnps 14941 blelrn 14942 xmetresbl 14962 comet 15021 bdxmet 15023 xmettx 15032 dvidlemap 15213 dvidrelem 15214 dvidsslem 15215 dvaddxxbr 15223 dvmulxxbr 15224 dvrecap 15235 plyaddlem1 15269 nninfall 16061 nninfsellemeqinf 16068 nninffeq 16072 nnnninfex 16074 nninfnfiinf 16075 refeq 16082 |
| Copyright terms: Public domain | W3C validator |