![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ffnd | GIF version |
Description: A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
ffnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
ffnd | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 5403 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fn wfn 5249 ⟶wf 5250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-f 5258 |
This theorem is referenced by: offeq 6144 difinfsn 7159 ctssdc 7172 nnnninfeq 7187 nninfdcinf 7230 nninfwlporlemd 7231 nninfwlporlem 7232 ofnegsub 8981 seqvalcd 10532 seq3feq2 10547 seq3feq 10551 seqf1oglem2 10591 seqfeq3 10600 ser0f 10605 facnn 10798 fac0 10799 resunimafz0 10902 wrdfn 10929 seq3shft 10982 fisumss 11535 prodf1f 11686 efcvgfsum 11810 nninfctlemfo 12177 ennnfonelemfun 12574 ennnfonelemf1 12575 mhmf1o 13042 resmhm2b 13061 mhmima 13063 mhmeql 13064 gsumwmhm 13070 grpinvf1o 13142 ghmrn 13327 ghmpreima 13336 ghmeql 13337 ghmnsgima 13338 ghmnsgpreima 13339 ghmeqker 13341 ghmf1o 13345 gsumfzmptfidmadd 13409 rhmf1o 13664 rnrhmsubrg 13748 psrbaglesuppg 14158 cnrest2 14404 lmss 14414 lmtopcnp 14418 upxp 14440 uptx 14442 cnmpt11 14451 cnmpt21 14459 cnmpt22f 14463 cnmptcom 14466 hmeof1o2 14476 psmetxrge0 14500 isxmet2d 14516 blelrnps 14587 blelrn 14588 xmetresbl 14608 comet 14667 bdxmet 14669 xmettx 14678 dvidlemap 14845 dvaddxxbr 14850 dvmulxxbr 14851 dvrecap 14862 plyaddlem1 14893 nninfall 15499 nninfsellemeqinf 15506 nninffeq 15510 refeq 15518 |
Copyright terms: Public domain | W3C validator |