| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffnd | GIF version | ||
| Description: A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| ffnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| ffnd | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5473 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 5313 ⟶wf 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5322 |
| This theorem is referenced by: offeq 6238 caofid0l 6251 caofid0r 6252 caofid1 6253 caofid2 6254 difinfsn 7275 ctssdc 7288 nnnninfeq 7303 nninfdcinf 7346 nninfwlporlemd 7347 nninfwlporlem 7348 ofnegsub 9117 seqvalcd 10691 seq3feq2 10706 seq3feq 10710 seqf1oglem2 10750 seqfeq3 10759 ser0f 10764 facnn 10957 fac0 10958 resunimafz0 11061 wrdfn 11094 swrdvalfn 11196 pfxfn 11223 pfxid 11226 cats1un 11261 seq3shft 11357 fisumss 11911 prodf1f 12062 efcvgfsum 12186 nninfctlemfo 12569 ennnfonelemfun 12996 ennnfonelemf1 12997 prdsplusgsgrpcl 13455 prdssgrpd 13456 prdsplusgcl 13487 prdsidlem 13488 prdsmndd 13489 mhmf1o 13511 resmhm2b 13530 mhmima 13532 mhmeql 13533 gsumwmhm 13539 grpinvf1o 13611 prdsinvlem 13649 ghmrn 13802 ghmpreima 13811 ghmeql 13812 ghmnsgima 13813 ghmnsgpreima 13814 ghmeqker 13816 ghmf1o 13820 gsumfzmptfidmadd 13884 rhmf1o 14140 rnrhmsubrg 14224 psrbaglesuppg 14644 mplsubgfilemcl 14671 cnrest2 14918 lmss 14928 lmtopcnp 14932 upxp 14954 uptx 14956 cnmpt11 14965 cnmpt21 14973 cnmpt22f 14977 cnmptcom 14980 hmeof1o2 14990 psmetxrge0 15014 isxmet2d 15030 blelrnps 15101 blelrn 15102 xmetresbl 15122 comet 15181 bdxmet 15183 xmettx 15192 dvidlemap 15373 dvidrelem 15374 dvidsslem 15375 dvaddxxbr 15383 dvmulxxbr 15384 dvrecap 15395 plyaddlem1 15429 upgredg 15950 nninfall 16405 nninfsellemeqinf 16412 nninffeq 16416 nnnninfex 16418 nninfnfiinf 16419 refeq 16426 |
| Copyright terms: Public domain | W3C validator |