| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ffnd | GIF version | ||
| Description: A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.) | 
| Ref | Expression | 
|---|---|
| ffnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | 
| Ref | Expression | 
|---|---|
| ffnd | ⊢ (𝜑 → 𝐹 Fn 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ffnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5407 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐹 Fn 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 Fn wfn 5253 ⟶wf 5254 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 | 
| This theorem depends on definitions: df-bi 117 df-f 5262 | 
| This theorem is referenced by: offeq 6149 difinfsn 7166 ctssdc 7179 nnnninfeq 7194 nninfdcinf 7237 nninfwlporlemd 7238 nninfwlporlem 7239 ofnegsub 8989 seqvalcd 10553 seq3feq2 10568 seq3feq 10572 seqf1oglem2 10612 seqfeq3 10621 ser0f 10626 facnn 10819 fac0 10820 resunimafz0 10923 wrdfn 10950 seq3shft 11003 fisumss 11557 prodf1f 11708 efcvgfsum 11832 nninfctlemfo 12207 ennnfonelemfun 12634 ennnfonelemf1 12635 mhmf1o 13102 resmhm2b 13121 mhmima 13123 mhmeql 13124 gsumwmhm 13130 grpinvf1o 13202 ghmrn 13387 ghmpreima 13396 ghmeql 13397 ghmnsgima 13398 ghmnsgpreima 13399 ghmeqker 13401 ghmf1o 13405 gsumfzmptfidmadd 13469 rhmf1o 13724 rnrhmsubrg 13808 psrbaglesuppg 14226 cnrest2 14472 lmss 14482 lmtopcnp 14486 upxp 14508 uptx 14510 cnmpt11 14519 cnmpt21 14527 cnmpt22f 14531 cnmptcom 14534 hmeof1o2 14544 psmetxrge0 14568 isxmet2d 14584 blelrnps 14655 blelrn 14656 xmetresbl 14676 comet 14735 bdxmet 14737 xmettx 14746 dvidlemap 14927 dvidrelem 14928 dvidsslem 14929 dvaddxxbr 14937 dvmulxxbr 14938 dvrecap 14949 plyaddlem1 14983 nninfall 15653 nninfsellemeqinf 15660 nninffeq 15664 refeq 15672 | 
| Copyright terms: Public domain | W3C validator |