| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffnd | GIF version | ||
| Description: A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| ffnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| ffnd | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5410 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 5254 ⟶wf 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5263 |
| This theorem is referenced by: offeq 6153 caofid0l 6166 caofid0r 6167 caofid1 6168 caofid2 6169 difinfsn 7175 ctssdc 7188 nnnninfeq 7203 nninfdcinf 7246 nninfwlporlemd 7247 nninfwlporlem 7248 ofnegsub 9006 seqvalcd 10570 seq3feq2 10585 seq3feq 10589 seqf1oglem2 10629 seqfeq3 10638 ser0f 10643 facnn 10836 fac0 10837 resunimafz0 10940 wrdfn 10967 seq3shft 11020 fisumss 11574 prodf1f 11725 efcvgfsum 11849 nninfctlemfo 12232 ennnfonelemfun 12659 ennnfonelemf1 12660 prdsplusgsgrpcl 13116 prdssgrpd 13117 prdsplusgcl 13148 prdsidlem 13149 prdsmndd 13150 mhmf1o 13172 resmhm2b 13191 mhmima 13193 mhmeql 13194 gsumwmhm 13200 grpinvf1o 13272 prdsinvlem 13310 ghmrn 13463 ghmpreima 13472 ghmeql 13473 ghmnsgima 13474 ghmnsgpreima 13475 ghmeqker 13477 ghmf1o 13481 gsumfzmptfidmadd 13545 rhmf1o 13800 rnrhmsubrg 13884 psrbaglesuppg 14302 cnrest2 14556 lmss 14566 lmtopcnp 14570 upxp 14592 uptx 14594 cnmpt11 14603 cnmpt21 14611 cnmpt22f 14615 cnmptcom 14618 hmeof1o2 14628 psmetxrge0 14652 isxmet2d 14668 blelrnps 14739 blelrn 14740 xmetresbl 14760 comet 14819 bdxmet 14821 xmettx 14830 dvidlemap 15011 dvidrelem 15012 dvidsslem 15013 dvaddxxbr 15021 dvmulxxbr 15022 dvrecap 15033 plyaddlem1 15067 nninfall 15740 nninfsellemeqinf 15747 nninffeq 15751 refeq 15759 |
| Copyright terms: Public domain | W3C validator |