| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffnd | GIF version | ||
| Description: A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| ffnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| ffnd | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5410 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 5254 ⟶wf 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5263 |
| This theorem is referenced by: offeq 6153 caofid0l 6166 caofid0r 6167 caofid1 6168 caofid2 6169 difinfsn 7175 ctssdc 7188 nnnninfeq 7203 nninfdcinf 7246 nninfwlporlemd 7247 nninfwlporlem 7248 ofnegsub 9008 seqvalcd 10572 seq3feq2 10587 seq3feq 10591 seqf1oglem2 10631 seqfeq3 10640 ser0f 10645 facnn 10838 fac0 10839 resunimafz0 10942 wrdfn 10969 seq3shft 11022 fisumss 11576 prodf1f 11727 efcvgfsum 11851 nninfctlemfo 12234 ennnfonelemfun 12661 ennnfonelemf1 12662 prdsplusgsgrpcl 13118 prdssgrpd 13119 prdsplusgcl 13150 prdsidlem 13151 prdsmndd 13152 mhmf1o 13174 resmhm2b 13193 mhmima 13195 mhmeql 13196 gsumwmhm 13202 grpinvf1o 13274 prdsinvlem 13312 ghmrn 13465 ghmpreima 13474 ghmeql 13475 ghmnsgima 13476 ghmnsgpreima 13477 ghmeqker 13479 ghmf1o 13483 gsumfzmptfidmadd 13547 rhmf1o 13802 rnrhmsubrg 13886 psrbaglesuppg 14306 mplsubgfilemcl 14333 cnrest2 14580 lmss 14590 lmtopcnp 14594 upxp 14616 uptx 14618 cnmpt11 14627 cnmpt21 14635 cnmpt22f 14639 cnmptcom 14642 hmeof1o2 14652 psmetxrge0 14676 isxmet2d 14692 blelrnps 14763 blelrn 14764 xmetresbl 14784 comet 14843 bdxmet 14845 xmettx 14854 dvidlemap 15035 dvidrelem 15036 dvidsslem 15037 dvaddxxbr 15045 dvmulxxbr 15046 dvrecap 15057 plyaddlem1 15091 nninfall 15764 nninfsellemeqinf 15771 nninffeq 15775 nnnninfex 15777 nninfnfiinf 15778 refeq 15785 |
| Copyright terms: Public domain | W3C validator |