![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fcoconst | GIF version |
Description: Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.) |
Ref | Expression |
---|---|
fcoconst | ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹‘𝑌)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 528 | . . 3 ⊢ (((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → 𝑌 ∈ 𝑋) | |
2 | fconstmpt 4675 | . . . 4 ⊢ (𝐼 × {𝑌}) = (𝑥 ∈ 𝐼 ↦ 𝑌) | |
3 | 2 | a1i 9 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐼 × {𝑌}) = (𝑥 ∈ 𝐼 ↦ 𝑌)) |
4 | simpl 109 | . . . . 5 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → 𝐹 Fn 𝑋) | |
5 | dffn2 5369 | . . . . 5 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋⟶V) | |
6 | 4, 5 | sylib 122 | . . . 4 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → 𝐹:𝑋⟶V) |
7 | 6 | feqmptd 5571 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → 𝐹 = (𝑦 ∈ 𝑋 ↦ (𝐹‘𝑦))) |
8 | fveq2 5517 | . . 3 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
9 | 1, 3, 7, 8 | fmptco 5684 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑌))) |
10 | fconstmpt 4675 | . 2 ⊢ (𝐼 × {(𝐹‘𝑌)}) = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑌)) | |
11 | 9, 10 | eqtr4di 2228 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹‘𝑌)})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 Vcvv 2739 {csn 3594 ↦ cmpt 4066 × cxp 4626 ∘ ccom 4632 Fn wfn 5213 ⟶wf 5214 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |