ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcoconst GIF version

Theorem fcoconst 5808
Description: Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Assertion
Ref Expression
fcoconst ((𝐹 Fn 𝑋𝑌𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹𝑌)}))

Proof of Theorem fcoconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . 3 (((𝐹 Fn 𝑋𝑌𝑋) ∧ 𝑥𝐼) → 𝑌𝑋)
2 fconstmpt 4766 . . . 4 (𝐼 × {𝑌}) = (𝑥𝐼𝑌)
32a1i 9 . . 3 ((𝐹 Fn 𝑋𝑌𝑋) → (𝐼 × {𝑌}) = (𝑥𝐼𝑌))
4 simpl 109 . . . . 5 ((𝐹 Fn 𝑋𝑌𝑋) → 𝐹 Fn 𝑋)
5 dffn2 5475 . . . . 5 (𝐹 Fn 𝑋𝐹:𝑋⟶V)
64, 5sylib 122 . . . 4 ((𝐹 Fn 𝑋𝑌𝑋) → 𝐹:𝑋⟶V)
76feqmptd 5689 . . 3 ((𝐹 Fn 𝑋𝑌𝑋) → 𝐹 = (𝑦𝑋 ↦ (𝐹𝑦)))
8 fveq2 5629 . . 3 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
91, 3, 7, 8fmptco 5803 . 2 ((𝐹 Fn 𝑋𝑌𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝑥𝐼 ↦ (𝐹𝑌)))
10 fconstmpt 4766 . 2 (𝐼 × {(𝐹𝑌)}) = (𝑥𝐼 ↦ (𝐹𝑌))
119, 10eqtr4di 2280 1 ((𝐹 Fn 𝑋𝑌𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹𝑌)}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  {csn 3666  cmpt 4145   × cxp 4717  ccom 4723   Fn wfn 5313  wf 5314  cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator