ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcoconst GIF version

Theorem fcoconst 5656
Description: Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Assertion
Ref Expression
fcoconst ((𝐹 Fn 𝑋𝑌𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹𝑌)}))

Proof of Theorem fcoconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 520 . . 3 (((𝐹 Fn 𝑋𝑌𝑋) ∧ 𝑥𝐼) → 𝑌𝑋)
2 fconstmpt 4651 . . . 4 (𝐼 × {𝑌}) = (𝑥𝐼𝑌)
32a1i 9 . . 3 ((𝐹 Fn 𝑋𝑌𝑋) → (𝐼 × {𝑌}) = (𝑥𝐼𝑌))
4 simpl 108 . . . . 5 ((𝐹 Fn 𝑋𝑌𝑋) → 𝐹 Fn 𝑋)
5 dffn2 5339 . . . . 5 (𝐹 Fn 𝑋𝐹:𝑋⟶V)
64, 5sylib 121 . . . 4 ((𝐹 Fn 𝑋𝑌𝑋) → 𝐹:𝑋⟶V)
76feqmptd 5539 . . 3 ((𝐹 Fn 𝑋𝑌𝑋) → 𝐹 = (𝑦𝑋 ↦ (𝐹𝑦)))
8 fveq2 5486 . . 3 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
91, 3, 7, 8fmptco 5651 . 2 ((𝐹 Fn 𝑋𝑌𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝑥𝐼 ↦ (𝐹𝑌)))
10 fconstmpt 4651 . 2 (𝐼 × {(𝐹𝑌)}) = (𝑥𝐼 ↦ (𝐹𝑌))
119, 10eqtr4di 2217 1 ((𝐹 Fn 𝑋𝑌𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹𝑌)}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  {csn 3576  cmpt 4043   × cxp 4602  ccom 4608   Fn wfn 5183  wf 5184  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator