ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uncld GIF version

Theorem uncld 14349
Description: The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
uncld ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))

Proof of Theorem uncld
StepHypRef Expression
1 difundi 3415 . . 3 ( 𝐽 ∖ (𝐴𝐵)) = (( 𝐽𝐴) ∩ ( 𝐽𝐵))
2 cldrcl 14338 . . . . 5 (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
32adantr 276 . . . 4 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
4 eqid 2196 . . . . . 6 𝐽 = 𝐽
54cldopn 14343 . . . . 5 (𝐴 ∈ (Clsd‘𝐽) → ( 𝐽𝐴) ∈ 𝐽)
65adantr 276 . . . 4 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ( 𝐽𝐴) ∈ 𝐽)
74cldopn 14343 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → ( 𝐽𝐵) ∈ 𝐽)
87adantl 277 . . . 4 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ( 𝐽𝐵) ∈ 𝐽)
9 inopn 14239 . . . 4 ((𝐽 ∈ Top ∧ ( 𝐽𝐴) ∈ 𝐽 ∧ ( 𝐽𝐵) ∈ 𝐽) → (( 𝐽𝐴) ∩ ( 𝐽𝐵)) ∈ 𝐽)
103, 6, 8, 9syl3anc 1249 . . 3 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (( 𝐽𝐴) ∩ ( 𝐽𝐵)) ∈ 𝐽)
111, 10eqeltrid 2283 . 2 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ( 𝐽 ∖ (𝐴𝐵)) ∈ 𝐽)
124cldss 14341 . . . . 5 (𝐴 ∈ (Clsd‘𝐽) → 𝐴 𝐽)
134cldss 14341 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → 𝐵 𝐽)
1412, 13anim12i 338 . . . 4 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 𝐽𝐵 𝐽))
15 unss 3337 . . . 4 ((𝐴 𝐽𝐵 𝐽) ↔ (𝐴𝐵) ⊆ 𝐽)
1614, 15sylib 122 . . 3 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ⊆ 𝐽)
174iscld2 14340 . . 3 ((𝐽 ∈ Top ∧ (𝐴𝐵) ⊆ 𝐽) → ((𝐴𝐵) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐴𝐵)) ∈ 𝐽))
183, 16, 17syl2anc 411 . 2 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((𝐴𝐵) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐴𝐵)) ∈ 𝐽))
1911, 18mpbird 167 1 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2167  cdif 3154  cun 3155  cin 3156  wss 3157   cuni 3839  cfv 5258  Topctop 14233  Clsdccld 14328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-top 14234  df-cld 14331
This theorem is referenced by:  iuncld  14351
  Copyright terms: Public domain W3C validator