![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uncld | GIF version |
Description: The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
uncld | ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difundi 3411 | . . 3 ⊢ (∪ 𝐽 ∖ (𝐴 ∪ 𝐵)) = ((∪ 𝐽 ∖ 𝐴) ∩ (∪ 𝐽 ∖ 𝐵)) | |
2 | cldrcl 14270 | . . . . 5 ⊢ (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
3 | 2 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top) |
4 | eqid 2193 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
5 | 4 | cldopn 14275 | . . . . 5 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝐴) ∈ 𝐽) |
6 | 5 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝐴) ∈ 𝐽) |
7 | 4 | cldopn 14275 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) |
8 | 7 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) |
9 | inopn 14171 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝐴) ∈ 𝐽 ∧ (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) → ((∪ 𝐽 ∖ 𝐴) ∩ (∪ 𝐽 ∖ 𝐵)) ∈ 𝐽) | |
10 | 3, 6, 8, 9 | syl3anc 1249 | . . 3 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((∪ 𝐽 ∖ 𝐴) ∩ (∪ 𝐽 ∖ 𝐵)) ∈ 𝐽) |
11 | 1, 10 | eqeltrid 2280 | . 2 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ (𝐴 ∪ 𝐵)) ∈ 𝐽) |
12 | 4 | cldss 14273 | . . . . 5 ⊢ (𝐴 ∈ (Clsd‘𝐽) → 𝐴 ⊆ ∪ 𝐽) |
13 | 4 | cldss 14273 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐵 ⊆ ∪ 𝐽) |
14 | 12, 13 | anim12i 338 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ⊆ ∪ 𝐽 ∧ 𝐵 ⊆ ∪ 𝐽)) |
15 | unss 3333 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝐽 ∧ 𝐵 ⊆ ∪ 𝐽) ↔ (𝐴 ∪ 𝐵) ⊆ ∪ 𝐽) | |
16 | 14, 15 | sylib 122 | . . 3 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ⊆ ∪ 𝐽) |
17 | 4 | iscld2 14272 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∪ 𝐵) ⊆ ∪ 𝐽) → ((𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (𝐴 ∪ 𝐵)) ∈ 𝐽)) |
18 | 3, 16, 17 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (𝐴 ∪ 𝐵)) ∈ 𝐽)) |
19 | 11, 18 | mpbird 167 | 1 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 ∖ cdif 3150 ∪ cun 3151 ∩ cin 3152 ⊆ wss 3153 ∪ cuni 3835 ‘cfv 5254 Topctop 14165 Clsdccld 14260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-top 14166 df-cld 14263 |
This theorem is referenced by: iuncld 14283 |
Copyright terms: Public domain | W3C validator |