Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uncld | GIF version |
Description: The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
uncld | ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difundi 3379 | . . 3 ⊢ (∪ 𝐽 ∖ (𝐴 ∪ 𝐵)) = ((∪ 𝐽 ∖ 𝐴) ∩ (∪ 𝐽 ∖ 𝐵)) | |
2 | cldrcl 12896 | . . . . 5 ⊢ (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
3 | 2 | adantr 274 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top) |
4 | eqid 2170 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
5 | 4 | cldopn 12901 | . . . . 5 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝐴) ∈ 𝐽) |
6 | 5 | adantr 274 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝐴) ∈ 𝐽) |
7 | 4 | cldopn 12901 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) |
8 | 7 | adantl 275 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) |
9 | inopn 12795 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝐴) ∈ 𝐽 ∧ (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) → ((∪ 𝐽 ∖ 𝐴) ∩ (∪ 𝐽 ∖ 𝐵)) ∈ 𝐽) | |
10 | 3, 6, 8, 9 | syl3anc 1233 | . . 3 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((∪ 𝐽 ∖ 𝐴) ∩ (∪ 𝐽 ∖ 𝐵)) ∈ 𝐽) |
11 | 1, 10 | eqeltrid 2257 | . 2 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ (𝐴 ∪ 𝐵)) ∈ 𝐽) |
12 | 4 | cldss 12899 | . . . . 5 ⊢ (𝐴 ∈ (Clsd‘𝐽) → 𝐴 ⊆ ∪ 𝐽) |
13 | 4 | cldss 12899 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐵 ⊆ ∪ 𝐽) |
14 | 12, 13 | anim12i 336 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ⊆ ∪ 𝐽 ∧ 𝐵 ⊆ ∪ 𝐽)) |
15 | unss 3301 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝐽 ∧ 𝐵 ⊆ ∪ 𝐽) ↔ (𝐴 ∪ 𝐵) ⊆ ∪ 𝐽) | |
16 | 14, 15 | sylib 121 | . . 3 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ⊆ ∪ 𝐽) |
17 | 4 | iscld2 12898 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∪ 𝐵) ⊆ ∪ 𝐽) → ((𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (𝐴 ∪ 𝐵)) ∈ 𝐽)) |
18 | 3, 16, 17 | syl2anc 409 | . 2 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (𝐴 ∪ 𝐵)) ∈ 𝐽)) |
19 | 11, 18 | mpbird 166 | 1 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 ∖ cdif 3118 ∪ cun 3119 ∩ cin 3120 ⊆ wss 3121 ∪ cuni 3796 ‘cfv 5198 Topctop 12789 Clsdccld 12886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-top 12790 df-cld 12889 |
This theorem is referenced by: iuncld 12909 |
Copyright terms: Public domain | W3C validator |