ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uncld GIF version

Theorem uncld 13698
Description: The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
uncld ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))

Proof of Theorem uncld
StepHypRef Expression
1 difundi 3389 . . 3 ( 𝐽 ∖ (𝐴𝐵)) = (( 𝐽𝐴) ∩ ( 𝐽𝐵))
2 cldrcl 13687 . . . . 5 (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
32adantr 276 . . . 4 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
4 eqid 2177 . . . . . 6 𝐽 = 𝐽
54cldopn 13692 . . . . 5 (𝐴 ∈ (Clsd‘𝐽) → ( 𝐽𝐴) ∈ 𝐽)
65adantr 276 . . . 4 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ( 𝐽𝐴) ∈ 𝐽)
74cldopn 13692 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → ( 𝐽𝐵) ∈ 𝐽)
87adantl 277 . . . 4 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ( 𝐽𝐵) ∈ 𝐽)
9 inopn 13588 . . . 4 ((𝐽 ∈ Top ∧ ( 𝐽𝐴) ∈ 𝐽 ∧ ( 𝐽𝐵) ∈ 𝐽) → (( 𝐽𝐴) ∩ ( 𝐽𝐵)) ∈ 𝐽)
103, 6, 8, 9syl3anc 1238 . . 3 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (( 𝐽𝐴) ∩ ( 𝐽𝐵)) ∈ 𝐽)
111, 10eqeltrid 2264 . 2 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ( 𝐽 ∖ (𝐴𝐵)) ∈ 𝐽)
124cldss 13690 . . . . 5 (𝐴 ∈ (Clsd‘𝐽) → 𝐴 𝐽)
134cldss 13690 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → 𝐵 𝐽)
1412, 13anim12i 338 . . . 4 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 𝐽𝐵 𝐽))
15 unss 3311 . . . 4 ((𝐴 𝐽𝐵 𝐽) ↔ (𝐴𝐵) ⊆ 𝐽)
1614, 15sylib 122 . . 3 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ⊆ 𝐽)
174iscld2 13689 . . 3 ((𝐽 ∈ Top ∧ (𝐴𝐵) ⊆ 𝐽) → ((𝐴𝐵) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐴𝐵)) ∈ 𝐽))
183, 16, 17syl2anc 411 . 2 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((𝐴𝐵) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐴𝐵)) ∈ 𝐽))
1911, 18mpbird 167 1 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2148  cdif 3128  cun 3129  cin 3130  wss 3131   cuni 3811  cfv 5218  Topctop 13582  Clsdccld 13677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-top 13583  df-cld 13680
This theorem is referenced by:  iuncld  13700
  Copyright terms: Public domain W3C validator