| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uncld | GIF version | ||
| Description: The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| uncld | ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difundi 3456 | . . 3 ⊢ (∪ 𝐽 ∖ (𝐴 ∪ 𝐵)) = ((∪ 𝐽 ∖ 𝐴) ∩ (∪ 𝐽 ∖ 𝐵)) | |
| 2 | cldrcl 14761 | . . . . 5 ⊢ (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 3 | 2 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top) |
| 4 | eqid 2229 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 5 | 4 | cldopn 14766 | . . . . 5 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝐴) ∈ 𝐽) |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝐴) ∈ 𝐽) |
| 7 | 4 | cldopn 14766 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) |
| 8 | 7 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) |
| 9 | inopn 14662 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝐴) ∈ 𝐽 ∧ (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) → ((∪ 𝐽 ∖ 𝐴) ∩ (∪ 𝐽 ∖ 𝐵)) ∈ 𝐽) | |
| 10 | 3, 6, 8, 9 | syl3anc 1271 | . . 3 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((∪ 𝐽 ∖ 𝐴) ∩ (∪ 𝐽 ∖ 𝐵)) ∈ 𝐽) |
| 11 | 1, 10 | eqeltrid 2316 | . 2 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ (𝐴 ∪ 𝐵)) ∈ 𝐽) |
| 12 | 4 | cldss 14764 | . . . . 5 ⊢ (𝐴 ∈ (Clsd‘𝐽) → 𝐴 ⊆ ∪ 𝐽) |
| 13 | 4 | cldss 14764 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐵 ⊆ ∪ 𝐽) |
| 14 | 12, 13 | anim12i 338 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ⊆ ∪ 𝐽 ∧ 𝐵 ⊆ ∪ 𝐽)) |
| 15 | unss 3378 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝐽 ∧ 𝐵 ⊆ ∪ 𝐽) ↔ (𝐴 ∪ 𝐵) ⊆ ∪ 𝐽) | |
| 16 | 14, 15 | sylib 122 | . . 3 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ⊆ ∪ 𝐽) |
| 17 | 4 | iscld2 14763 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∪ 𝐵) ⊆ ∪ 𝐽) → ((𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (𝐴 ∪ 𝐵)) ∈ 𝐽)) |
| 18 | 3, 16, 17 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (𝐴 ∪ 𝐵)) ∈ 𝐽)) |
| 19 | 11, 18 | mpbird 167 | 1 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 ∖ cdif 3194 ∪ cun 3195 ∩ cin 3196 ⊆ wss 3197 ∪ cuni 3887 ‘cfv 5314 Topctop 14656 Clsdccld 14751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 df-top 14657 df-cld 14754 |
| This theorem is referenced by: iuncld 14774 |
| Copyright terms: Public domain | W3C validator |