![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uncld | GIF version |
Description: The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
uncld | ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difundi 3267 | . . 3 ⊢ (∪ 𝐽 ∖ (𝐴 ∪ 𝐵)) = ((∪ 𝐽 ∖ 𝐴) ∩ (∪ 𝐽 ∖ 𝐵)) | |
2 | cldrcl 11954 | . . . . 5 ⊢ (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
3 | 2 | adantr 271 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top) |
4 | eqid 2095 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
5 | 4 | cldopn 11959 | . . . . 5 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝐴) ∈ 𝐽) |
6 | 5 | adantr 271 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝐴) ∈ 𝐽) |
7 | 4 | cldopn 11959 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) |
8 | 7 | adantl 272 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) |
9 | inopn 11854 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝐴) ∈ 𝐽 ∧ (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) → ((∪ 𝐽 ∖ 𝐴) ∩ (∪ 𝐽 ∖ 𝐵)) ∈ 𝐽) | |
10 | 3, 6, 8, 9 | syl3anc 1181 | . . 3 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((∪ 𝐽 ∖ 𝐴) ∩ (∪ 𝐽 ∖ 𝐵)) ∈ 𝐽) |
11 | 1, 10 | syl5eqel 2181 | . 2 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ (𝐴 ∪ 𝐵)) ∈ 𝐽) |
12 | 4 | cldss 11957 | . . . . 5 ⊢ (𝐴 ∈ (Clsd‘𝐽) → 𝐴 ⊆ ∪ 𝐽) |
13 | 4 | cldss 11957 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐵 ⊆ ∪ 𝐽) |
14 | 12, 13 | anim12i 332 | . . . 4 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ⊆ ∪ 𝐽 ∧ 𝐵 ⊆ ∪ 𝐽)) |
15 | unss 3189 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝐽 ∧ 𝐵 ⊆ ∪ 𝐽) ↔ (𝐴 ∪ 𝐵) ⊆ ∪ 𝐽) | |
16 | 14, 15 | sylib 121 | . . 3 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ⊆ ∪ 𝐽) |
17 | 4 | iscld2 11956 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∪ 𝐵) ⊆ ∪ 𝐽) → ((𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (𝐴 ∪ 𝐵)) ∈ 𝐽)) |
18 | 3, 16, 17 | syl2anc 404 | . 2 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (𝐴 ∪ 𝐵)) ∈ 𝐽)) |
19 | 11, 18 | mpbird 166 | 1 ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 1445 ∖ cdif 3010 ∪ cun 3011 ∩ cin 3012 ⊆ wss 3013 ∪ cuni 3675 ‘cfv 5049 Topctop 11848 Clsdccld 11944 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fn 5052 df-fv 5057 df-top 11849 df-cld 11947 |
This theorem is referenced by: iuncld 11967 |
Copyright terms: Public domain | W3C validator |