Theorem List for Intuitionistic Logic Explorer - 5701-5800   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | elrnrexdm 5701* | 
For any element in the range of a function there is an element in the
       domain of the function for which the function value is the element of
       the range.  (Contributed by Alexander van der Vekens, 8-Dec-2017.)
 | 
| ⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) | 
|   | 
| Theorem | elrnrexdmb 5702* | 
For any element in the range of a function there is an element in the
       domain of the function for which the function value is the element of
       the range.  (Contributed by Alexander van der Vekens, 17-Dec-2017.)
 | 
| ⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) | 
|   | 
| Theorem | eldmrexrn 5703* | 
For any element in the domain of a function there is an element in the
       range of the function which is the function value for the element of the
       domain.  (Contributed by Alexander van der Vekens, 8-Dec-2017.)
 | 
| ⊢ (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) | 
|   | 
| Theorem | ralrnmpt 5704* | 
A restricted quantifier over an image set.  (Contributed by Mario
       Carneiro, 20-Aug-2015.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)   
 &   ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))    ⇒   ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | 
|   | 
| Theorem | rexrnmpt 5705* | 
A restricted quantifier over an image set.  (Contributed by Mario
       Carneiro, 20-Aug-2015.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)   
 &   ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))    ⇒   ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | 
|   | 
| Theorem | dff2 5706 | 
Alternate definition of a mapping.  (Contributed by NM, 14-Nov-2007.)
 | 
| ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) | 
|   | 
| Theorem | dff3im 5707* | 
Property of a mapping.  (Contributed by Jim Kingdon, 4-Jan-2019.)
 | 
| ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦)) | 
|   | 
| Theorem | dff4im 5708* | 
Property of a mapping.  (Contributed by Jim Kingdon, 4-Jan-2019.)
 | 
| ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) | 
|   | 
| Theorem | dffo3 5709* | 
An onto mapping expressed in terms of function values.  (Contributed by
       NM, 29-Oct-2006.)
 | 
| ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) | 
|   | 
| Theorem | dffo4 5710* | 
Alternate definition of an onto mapping.  (Contributed by NM,
       20-Mar-2007.)
 | 
| ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) | 
|   | 
| Theorem | dffo5 5711* | 
Alternate definition of an onto mapping.  (Contributed by NM,
       20-Mar-2007.)
 | 
| ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦)) | 
|   | 
| Theorem | fmpt 5712* | 
Functionality of the mapping operation.  (Contributed by Mario Carneiro,
       26-Jul-2013.)  (Revised by Mario Carneiro, 31-Aug-2015.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)    ⇒   ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) | 
|   | 
| Theorem | f1ompt 5713* | 
Express bijection for a mapping operation.  (Contributed by Mario
       Carneiro, 30-May-2015.)  (Revised by Mario Carneiro, 4-Dec-2016.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)    ⇒   ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝑦 = 𝐶)) | 
|   | 
| Theorem | fmpti 5714* | 
Functionality of the mapping operation.  (Contributed by NM,
       19-Mar-2005.)  (Revised by Mario Carneiro, 1-Sep-2015.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)   
 &   ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)    ⇒   ⊢ 𝐹:𝐴⟶𝐵 | 
|   | 
| Theorem | fvmptelcdm 5715* | 
The value of a function at a point of its domain belongs to its
       codomain.  (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 | 
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶)    ⇒   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | 
|   | 
| Theorem | fmptd 5716* | 
Domain and codomain of the mapping operation; deduction form.
       (Contributed by Mario Carneiro, 13-Jan-2013.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶)   
 &   ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)    ⇒   ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | 
|   | 
| Theorem | fmpttd 5717* | 
Version of fmptd 5716 with inlined definition.  Domain and codomain
of the
       mapping operation; deduction form.  (Contributed by Glauco Siliprandi,
       23-Oct-2021.)  (Proof shortened by BJ, 16-Aug-2022.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶)    ⇒   ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | 
|   | 
| Theorem | fmpt3d 5718* | 
Domain and codomain of the mapping operation; deduction form.
       (Contributed by Thierry Arnoux, 4-Jun-2017.)
 | 
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵))    &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶)    ⇒   ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | 
|   | 
| Theorem | fmptdf 5719* | 
A version of fmptd 5716 using bound-variable hypothesis instead of a
       distinct variable condition for 𝜑.  (Contributed by Glauco
       Siliprandi, 29-Jun-2017.)
 | 
| ⊢ Ⅎ𝑥𝜑   
 &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶)   
 &   ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)    ⇒   ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | 
|   | 
| Theorem | ffnfv 5720* | 
A function maps to a class to which all values belong.  (Contributed by
       NM, 3-Dec-2003.)
 | 
| ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | 
|   | 
| Theorem | ffnfvf 5721 | 
A function maps to a class to which all values belong.  This version of
       ffnfv 5720 uses bound-variable hypotheses instead of
distinct variable
       conditions.  (Contributed by NM, 28-Sep-2006.)
 | 
| ⊢ Ⅎ𝑥𝐴   
 &   ⊢ Ⅎ𝑥𝐵   
 &   ⊢ Ⅎ𝑥𝐹    ⇒   ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | 
|   | 
| Theorem | fnfvrnss 5722* | 
An upper bound for range determined by function values.  (Contributed by
       NM, 8-Oct-2004.)
 | 
| ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) | 
|   | 
| Theorem | rnmptss 5723* | 
The range of an operation given by the maps-to notation as a subset.
       (Contributed by Thierry Arnoux, 24-Sep-2017.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)    ⇒   ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) | 
|   | 
| Theorem | fmpt2d 5724* | 
Domain and codomain of the mapping operation; deduction form.
       (Contributed by NM, 27-Dec-2014.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉)   
 &   ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵))    &   ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ 𝐶)    ⇒   ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | 
|   | 
| Theorem | ffvresb 5725* | 
A necessary and sufficient condition for a restricted function.
       (Contributed by Mario Carneiro, 14-Nov-2013.)
 | 
| ⊢ (Fun 𝐹 → ((𝐹 ↾ 𝐴):𝐴⟶𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵))) | 
|   | 
| Theorem | resflem 5726* | 
A lemma to bound the range of a restriction.  The conclusion would also
       hold with (𝑋 ∩ 𝑌) in place of 𝑌 (provided 𝑥 does
not
       occur in 𝑋).  If that stronger result is
needed, it is however
       simpler to use the instance of resflem 5726 where (𝑋 ∩ 𝑌) is
       substituted for 𝑌 (in both the conclusion and the
third hypothesis).
       (Contributed by BJ, 4-Jul-2022.)
 | 
| ⊢ (𝜑 → 𝐹:𝑉⟶𝑋)   
 &   ⊢ (𝜑 → 𝐴 ⊆ 𝑉)   
 &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑌)    ⇒   ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝑌) | 
|   | 
| Theorem | f1oresrab 5727* | 
Build a bijection between restricted abstract builders, given a
       bijection between the base classes, deduction version.  (Contributed by
       Thierry Arnoux, 17-Aug-2018.)
 | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)   
 &   ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵)   
 &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → (𝜒 ↔ 𝜓))    ⇒   ⊢ (𝜑 → (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) | 
|   | 
| Theorem | fmptco 5728* | 
Composition of two functions expressed as ordered-pair class
       abstractions.  If 𝐹 has the equation ( x + 2 ) and 𝐺 the
       equation ( 3 * z ) then (𝐺 ∘ 𝐹) has the equation ( 3 * ( x +
       2 ) ) .  (Contributed by FL, 21-Jun-2012.)  (Revised by Mario Carneiro,
       24-Jul-2014.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝐵)   
 &   ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅))    &   ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆))    &   ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇)    ⇒   ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝑇)) | 
|   | 
| Theorem | fmptcof 5729* | 
Version of fmptco 5728 where 𝜑 needn't be distinct from 𝑥.
         (Contributed by NM, 27-Dec-2014.)
 | 
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵)   
 &   ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅))    &   ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆))    &   ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇)    ⇒   ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝑇)) | 
|   | 
| Theorem | fmptcos 5730* | 
Composition of two functions expressed as mapping abstractions.
       (Contributed by NM, 22-May-2006.)  (Revised by Mario Carneiro,
       31-Aug-2015.)
 | 
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵)   
 &   ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅))    &   ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆))    ⇒   ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆)) | 
|   | 
| Theorem | cofmpt 5731* | 
Express composition of a maps-to function with another function in a
       maps-to notation.  (Contributed by Thierry Arnoux, 29-Jun-2017.)
 | 
| ⊢ (𝜑 → 𝐹:𝐶⟶𝐷)   
 &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶)    ⇒   ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵))) | 
|   | 
| Theorem | fcompt 5732* | 
Express composition of two functions as a maps-to applying both in
       sequence.  (Contributed by Stefan O'Rear, 5-Oct-2014.)  (Proof shortened
       by Mario Carneiro, 27-Dec-2014.)
 | 
| ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) | 
|   | 
| Theorem | fcoconst 5733 | 
Composition with a constant function.  (Contributed by Stefan O'Rear,
       11-Mar-2015.)
 | 
| ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹‘𝑌)})) | 
|   | 
| Theorem | fsn 5734 | 
A function maps a singleton to a singleton iff it is the singleton of an
       ordered pair.  (Contributed by NM, 10-Dec-2003.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐵 ∈
 V    ⇒   ⊢ (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉}) | 
|   | 
| Theorem | fsng 5735 | 
A function maps a singleton to a singleton iff it is the singleton of an
       ordered pair.  (Contributed by NM, 26-Oct-2012.)
 | 
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉})) | 
|   | 
| Theorem | fsn2 5736 | 
A function that maps a singleton to a class is the singleton of an
       ordered pair.  (Contributed by NM, 19-May-2004.)
 | 
| ⊢ 𝐴 ∈ V    ⇒   ⊢ (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) | 
|   | 
| Theorem | xpsng 5737 | 
The cross product of two singletons.  (Contributed by Mario Carneiro,
     30-Apr-2015.)
 | 
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) | 
|   | 
| Theorem | xpsn 5738 | 
The cross product of two singletons.  (Contributed by NM,
       4-Nov-2006.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐵 ∈
 V    ⇒   ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} | 
|   | 
| Theorem | dfmpt 5739 | 
Alternate definition for the maps-to notation df-mpt 4096 (although it
       requires that 𝐵 be a set).  (Contributed by NM,
24-Aug-2010.)
       (Revised by Mario Carneiro, 30-Dec-2016.)
 | 
| ⊢ 𝐵 ∈ V    ⇒   ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪
 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} | 
|   | 
| Theorem | fnasrn 5740 | 
A function expressed as the range of another function.  (Contributed by
       Mario Carneiro, 22-Jun-2013.)  (Proof shortened by Mario Carneiro,
       31-Aug-2015.)
 | 
| ⊢ 𝐵 ∈ V    ⇒   ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) | 
|   | 
| Theorem | dfmptg 5741 | 
Alternate definition for the maps-to notation df-mpt 4096 (which requires
     that 𝐵 be a set).  (Contributed by Jim
Kingdon, 9-Jan-2019.)
 | 
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪
 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉}) | 
|   | 
| Theorem | fnasrng 5742 | 
A function expressed as the range of another function.  (Contributed by
       Jim Kingdon, 9-Jan-2019.)
 | 
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉)) | 
|   | 
| Theorem | ressnop0 5743 | 
If 𝐴 is not in 𝐶, then the restriction of
a singleton of
     〈𝐴, 𝐵〉 to 𝐶 is null.  (Contributed
by Scott Fenton,
     15-Apr-2011.)
 | 
| ⊢ (¬ 𝐴 ∈ 𝐶 → ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) | 
|   | 
| Theorem | fpr 5744 | 
A function with a domain of two elements.  (Contributed by Jeff Madsen,
       20-Jun-2010.)  (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐵 ∈ V    &   ⊢ 𝐶 ∈ V    &   ⊢ 𝐷 ∈
 V    ⇒   ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) | 
|   | 
| Theorem | fprg 5745 | 
A function with a domain of two elements.  (Contributed by FL,
     2-Feb-2014.)
 | 
| ⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐹) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐻) ∧ 𝐴 ≠ 𝐵) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) | 
|   | 
| Theorem | ftpg 5746 | 
A function with a domain of three elements.  (Contributed by Alexander van
     der Vekens, 4-Dec-2017.)
 | 
| ⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐻) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉, 〈𝑍, 𝐶〉}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶}) | 
|   | 
| Theorem | ftp 5747 | 
A function with a domain of three elements.  (Contributed by Stefan
       O'Rear, 17-Oct-2014.)  (Proof shortened by Alexander van der Vekens,
       23-Jan-2018.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐵 ∈ V    &   ⊢ 𝐶 ∈ V    &   ⊢ 𝑋 ∈ V    &   ⊢ 𝑌 ∈ V    &   ⊢ 𝑍 ∈ V    &   ⊢ 𝐴 ≠ 𝐵   
 &   ⊢ 𝐴 ≠ 𝐶   
 &   ⊢ 𝐵 ≠ 𝐶    ⇒   ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍} | 
|   | 
| Theorem | fnressn 5748 | 
A function restricted to a singleton.  (Contributed by NM,
       9-Oct-2004.)
 | 
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 ↾ {𝐵}) = {〈𝐵, (𝐹‘𝐵)〉}) | 
|   | 
| Theorem | fressnfv 5749 | 
The value of a function restricted to a singleton.  (Contributed by NM,
       9-Oct-2004.)
 | 
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹‘𝐵) ∈ 𝐶)) | 
|   | 
| Theorem | fvconst 5750 | 
The value of a constant function.  (Contributed by NM, 30-May-1999.)
 | 
| ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) = 𝐵) | 
|   | 
| Theorem | fmptsn 5751* | 
Express a singleton function in maps-to notation.  (Contributed by NM,
       6-Jun-2006.)  (Proof shortened by Andrew Salmon, 22-Oct-2011.)  (Revised
       by Stefan O'Rear, 28-Feb-2015.)
 | 
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | 
|   | 
| Theorem | fmptap 5752* | 
Append an additional value to a function.  (Contributed by NM,
       6-Jun-2006.)  (Revised by Mario Carneiro, 31-Aug-2015.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐵 ∈ V    &   ⊢ (𝑅 ∪ {𝐴}) = 𝑆   
 &   ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐵)    ⇒   ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶) | 
|   | 
| Theorem | fmptapd 5753* | 
Append an additional value to a function.  (Contributed by Thierry
       Arnoux, 3-Jan-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ V)    &   ⊢ (𝜑 → 𝐵 ∈ V)    &   ⊢ (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆)   
 &   ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐵)    ⇒   ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶)) | 
|   | 
| Theorem | fmptpr 5754* | 
Express a pair function in maps-to notation.  (Contributed by Thierry
       Arnoux, 3-Jan-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)   
 &   ⊢ (𝜑 → 𝐵 ∈ 𝑊)   
 &   ⊢ (𝜑 → 𝐶 ∈ 𝑋)   
 &   ⊢ (𝜑 → 𝐷 ∈ 𝑌)   
 &   ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐸 = 𝐶)   
 &   ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐸 = 𝐷)    ⇒   ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) | 
|   | 
| Theorem | fvresi 5755 | 
The value of a restricted identity function.  (Contributed by NM,
     19-May-2004.)
 | 
| ⊢ (𝐵 ∈ 𝐴 → (( I ↾ 𝐴)‘𝐵) = 𝐵) | 
|   | 
| Theorem | fvunsng 5756 | 
Remove an ordered pair not participating in a function value.
     (Contributed by Jim Kingdon, 7-Jan-2019.)
 | 
| ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = (𝐴‘𝐷)) | 
|   | 
| Theorem | fvsn 5757 | 
The value of a singleton of an ordered pair is the second member.
       (Contributed by NM, 12-Aug-1994.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐵 ∈
 V    ⇒   ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 | 
|   | 
| Theorem | fvsng 5758 | 
The value of a singleton of an ordered pair is the second member.
       (Contributed by NM, 26-Oct-2012.)
 | 
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) | 
|   | 
| Theorem | fvsnun1 5759 | 
The value of a function with one of its ordered pairs replaced, at the
       replaced ordered pair.  See also fvsnun2 5760.  (Contributed by NM,
       23-Sep-2007.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐵 ∈ V    &   ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))    ⇒   ⊢ (𝐺‘𝐴) = 𝐵 | 
|   | 
| Theorem | fvsnun2 5760 | 
The value of a function with one of its ordered pairs replaced, at
       arguments other than the replaced one.  See also fvsnun1 5759.
       (Contributed by NM, 23-Sep-2007.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐵 ∈ V    &   ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))    ⇒   ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺‘𝐷) = (𝐹‘𝐷)) | 
|   | 
| Theorem | fnsnsplitss 5761 | 
Split a function into a single point and all the rest.  (Contributed by
     Stefan O'Rear, 27-Feb-2015.)  (Revised by Jim Kingdon, 20-Jan-2023.)
 | 
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) ⊆ 𝐹) | 
|   | 
| Theorem | fsnunf 5762 | 
Adjoining a point to a function gives a function.  (Contributed by Stefan
     O'Rear, 28-Feb-2015.)
 | 
| ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶𝑇) | 
|   | 
| Theorem | fsnunfv 5763 | 
Recover the added point from a point-added function.  (Contributed by
     Stefan O'Rear, 28-Feb-2015.)  (Revised by NM, 18-May-2017.)
 | 
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {〈𝑋, 𝑌〉})‘𝑋) = 𝑌) | 
|   | 
| Theorem | fsnunres 5764 | 
Recover the original function from a point-added function.  (Contributed
     by Stefan O'Rear, 28-Feb-2015.)
 | 
| ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) ↾ 𝑆) = 𝐹) | 
|   | 
| Theorem | funresdfunsnss 5765 | 
Restricting a function to a domain without one element of the domain of
     the function, and adding a pair of this element and the function value of
     the element results in a subset of the function itself.  (Contributed by
     AV, 2-Dec-2018.)  (Revised by Jim Kingdon, 21-Jan-2023.)
 | 
| ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) ⊆ 𝐹) | 
|   | 
| Theorem | fvpr1 5766 | 
The value of a function with a domain of two elements.  (Contributed by
       Jeff Madsen, 20-Jun-2010.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐶 ∈
 V    ⇒   ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) | 
|   | 
| Theorem | fvpr2 5767 | 
The value of a function with a domain of two elements.  (Contributed by
       Jeff Madsen, 20-Jun-2010.)
 | 
| ⊢ 𝐵 ∈ V    &   ⊢ 𝐷 ∈
 V    ⇒   ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) | 
|   | 
| Theorem | fvpr1g 5768 | 
The value of a function with a domain of (at most) two elements.
     (Contributed by Alexander van der Vekens, 3-Dec-2017.)
 | 
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) | 
|   | 
| Theorem | fvpr2g 5769 | 
The value of a function with a domain of (at most) two elements.
     (Contributed by Alexander van der Vekens, 3-Dec-2017.)
 | 
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) | 
|   | 
| Theorem | fvtp1g 5770 | 
The value of a function with a domain of (at most) three elements.
     (Contributed by Alexander van der Vekens, 4-Dec-2017.)
 | 
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) | 
|   | 
| Theorem | fvtp2g 5771 | 
The value of a function with a domain of (at most) three elements.
     (Contributed by Alexander van der Vekens, 4-Dec-2017.)
 | 
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐵) = 𝐸) | 
|   | 
| Theorem | fvtp3g 5772 | 
The value of a function with a domain of (at most) three elements.
     (Contributed by Alexander van der Vekens, 4-Dec-2017.)
 | 
| ⊢ (((𝐶 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐶) = 𝐹) | 
|   | 
| Theorem | fvtp1 5773 | 
The first value of a function with a domain of three elements.
       (Contributed by NM, 14-Sep-2011.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐷 ∈
 V    ⇒   ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) | 
|   | 
| Theorem | fvtp2 5774 | 
The second value of a function with a domain of three elements.
       (Contributed by NM, 14-Sep-2011.)
 | 
| ⊢ 𝐵 ∈ V    &   ⊢ 𝐸 ∈
 V    ⇒   ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐵) = 𝐸) | 
|   | 
| Theorem | fvtp3 5775 | 
The third value of a function with a domain of three elements.
       (Contributed by NM, 14-Sep-2011.)
 | 
| ⊢ 𝐶 ∈ V    &   ⊢ 𝐹 ∈
 V    ⇒   ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐶) = 𝐹) | 
|   | 
| Theorem | fvconst2g 5776 | 
The value of a constant function.  (Contributed by NM, 20-Aug-2005.)
 | 
| ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | 
|   | 
| Theorem | fconst2g 5777 | 
A constant function expressed as a cross product.  (Contributed by NM,
       27-Nov-2007.)
 | 
| ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) | 
|   | 
| Theorem | fvconst2 5778 | 
The value of a constant function.  (Contributed by NM, 16-Apr-2005.)
 | 
| ⊢ 𝐵 ∈ V    ⇒   ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | 
|   | 
| Theorem | fconst2 5779 | 
A constant function expressed as a cross product.  (Contributed by NM,
       20-Aug-1999.)
 | 
| ⊢ 𝐵 ∈ V    ⇒   ⊢ (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})) | 
|   | 
| Theorem | fconstfvm 5780* | 
A constant function expressed in terms of its functionality, domain, and
       value.  See also fconst2 5779.  (Contributed by Jim Kingdon,
       8-Jan-2019.)
 | 
| ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵))) | 
|   | 
| Theorem | fconst3m 5781* | 
Two ways to express a constant function.  (Contributed by Jim Kingdon,
       8-Jan-2019.)
 | 
| ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})))) | 
|   | 
| Theorem | fconst4m 5782* | 
Two ways to express a constant function.  (Contributed by NM,
       8-Mar-2007.)
 | 
| ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴))) | 
|   | 
| Theorem | resfunexg 5783 | 
The restriction of a function to a set exists.  Compare Proposition 6.17
       of [TakeutiZaring] p. 28. 
(Contributed by NM, 7-Apr-1995.)  (Revised by
       Mario Carneiro, 22-Jun-2013.)
 | 
| ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) | 
|   | 
| Theorem | fnex 5784 | 
If the domain of a function is a set, the function is a set.  Theorem
     6.16(1) of [TakeutiZaring] p. 28. 
This theorem is derived using the Axiom
     of Replacement in the form of resfunexg 5783.  (Contributed by NM,
     14-Aug-1994.)  (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 | 
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) | 
|   | 
| Theorem | funex 5785 | 
If the domain of a function exists, so does the function.  Part of Theorem
     4.15(v) of [Monk1] p. 46.  This theorem is
derived using the Axiom of
     Replacement in the form of fnex 5784.  (Note:  Any resemblance between
     F.U.N.E.X. and "Have You Any Eggs" is purely a coincidence
originated by
     Swedish chefs.)  (Contributed by NM, 11-Nov-1995.)
 | 
| ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵) → 𝐹 ∈ V) | 
|   | 
| Theorem | opabex 5786* | 
Existence of a function expressed as class of ordered pairs.
       (Contributed by NM, 21-Jul-1996.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑)    ⇒   ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V | 
|   | 
| Theorem | mptexg 5787* | 
If the domain of a function given by maps-to notation is a set, the
       function is a set.  (Contributed by FL, 6-Jun-2011.)  (Revised by Mario
       Carneiro, 31-Aug-2015.)
 | 
| ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | 
|   | 
| Theorem | mptex 5788* | 
If the domain of a function given by maps-to notation is a set, the
       function is a set.  (Contributed by NM, 22-Apr-2005.)  (Revised by Mario
       Carneiro, 20-Dec-2013.)
 | 
| ⊢ 𝐴 ∈ V    ⇒   ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V | 
|   | 
| Theorem | mptexd 5789* | 
If the domain of a function given by maps-to notation is a set, the
       function is a set.  Deduction version of mptexg 5787.  (Contributed by
       Glauco Siliprandi, 24-Dec-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)    ⇒   ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | 
|   | 
| Theorem | mptrabex 5790* | 
If the domain of a function given by maps-to notation is a class
       abstraction based on a set, the function is a set.  (Contributed by AV,
       16-Jul-2019.)  (Revised by AV, 26-Mar-2021.)
 | 
| ⊢ 𝐴 ∈ V    ⇒   ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↦ 𝐵) ∈ V | 
|   | 
| Theorem | fex 5791 | 
If the domain of a mapping is a set, the function is a set.  (Contributed
     by NM, 3-Oct-1999.)
 | 
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | 
|   | 
| Theorem | fexd 5792 | 
If the domain of a mapping is a set, the function is a set.
       (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 | 
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵)   
 &   ⊢ (𝜑 → 𝐴 ∈ 𝐶)    ⇒   ⊢ (𝜑 → 𝐹 ∈ V) | 
|   | 
| Theorem | eufnfv 5793* | 
A function is uniquely determined by its values.  (Contributed by NM,
       31-Aug-2011.)
 | 
| ⊢ 𝐴 ∈ V    &   ⊢ 𝐵 ∈
 V    ⇒   ⊢ ∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) | 
|   | 
| Theorem | funfvima 5794 | 
A function's value in a preimage belongs to the image.  (Contributed by
     NM, 23-Sep-2003.)
 | 
| ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) | 
|   | 
| Theorem | funfvima2 5795 | 
A function's value in an included preimage belongs to the image.
     (Contributed by NM, 3-Feb-1997.)
 | 
| ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) | 
|   | 
| Theorem | funfvima3 5796 | 
A class including a function contains the function's value in the image
       of the singleton of the argument.  (Contributed by NM, 23-Mar-2004.)
 | 
| ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ 𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ (𝐺 “ {𝐴}))) | 
|   | 
| Theorem | fnfvima 5797 | 
The function value of an operand in a set is contained in the image of
     that set, using the Fn abbreviation.  (Contributed
by Stefan O'Rear,
     10-Mar-2015.)
 | 
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) | 
|   | 
| Theorem | foima2 5798* | 
Given an onto function, an element is in its codomain if and only if it
       is the image of an element of its domain (see foima 5485).  (Contributed
       by BJ, 6-Jul-2022.)
 | 
| ⊢ (𝐹:𝐴–onto→𝐵 → (𝑌 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑌 = (𝐹‘𝑥))) | 
|   | 
| Theorem | foelrn 5799* | 
Property of a surjective function.  (Contributed by Jeff Madsen,
       4-Jan-2011.)  (Proof shortened by BJ, 6-Jul-2022.)
 | 
| ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) | 
|   | 
| Theorem | foco2 5800 | 
If a composition of two functions is surjective, then the function on
       the left is surjective.  (Contributed by Jeff Madsen, 16-Jun-2011.)
 | 
| ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) → 𝐹:𝐵–onto→𝐶) |