ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idref GIF version

Theorem idref 5800
Description: TODO: This is the same as issref 5049 (which has a much longer proof). Should we replace issref 5049 with this one? - NM 9-May-2016.

Two ways to state a relation is reflexive. (Adapted from Tarski.) (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Proof modification is discouraged.)

Assertion
Ref Expression
idref (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem idref
StepHypRef Expression
1 eqid 2193 . . . 4 (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) = (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩)
21fmpt 5709 . . 3 (∀𝑥𝐴𝑥, 𝑥⟩ ∈ 𝑅 ↔ (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴𝑅)
3 vex 2763 . . . . . 6 𝑥 ∈ V
43, 3opex 4259 . . . . 5 𝑥, 𝑥⟩ ∈ V
54, 1fnmpti 5383 . . . 4 (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) Fn 𝐴
6 df-f 5259 . . . 4 ((𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴𝑅 ↔ ((𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) Fn 𝐴 ∧ ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅))
75, 6mpbiran 942 . . 3 ((𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴𝑅 ↔ ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅)
82, 7bitri 184 . 2 (∀𝑥𝐴𝑥, 𝑥⟩ ∈ 𝑅 ↔ ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅)
9 df-br 4031 . . 3 (𝑥𝑅𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅)
109ralbii 2500 . 2 (∀𝑥𝐴 𝑥𝑅𝑥 ↔ ∀𝑥𝐴𝑥, 𝑥⟩ ∈ 𝑅)
11 mptresid 4997 . . . . 5 ( I ↾ 𝐴) = (𝑥𝐴𝑥)
1211eqcomi 2197 . . . 4 (𝑥𝐴𝑥) = ( I ↾ 𝐴)
133fnasrn 5737 . . . 4 (𝑥𝐴𝑥) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩)
1412, 13eqtr3i 2216 . . 3 ( I ↾ 𝐴) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩)
1514sseq1i 3206 . 2 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅)
168, 10, 153bitr4ri 213 1 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2164  wral 2472  wss 3154  cop 3622   class class class wbr 4030  cmpt 4091   I cid 4320  ran crn 4661  cres 4662   Fn wfn 5250  wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator