| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > idref | GIF version | ||
| Description: TODO: This is the same
as issref 5087 (which has a much longer proof).
Should we replace issref 5087 with this one? - NM 9-May-2016.
Two ways to state a relation is reflexive. (Adapted from Tarski.) (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| idref | ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2209 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) = (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) | |
| 2 | 1 | fmpt 5758 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 〈𝑥, 𝑥〉 ∈ 𝑅 ↔ (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉):𝐴⟶𝑅) |
| 3 | vex 2782 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | 3, 3 | opex 4294 | . . . . 5 ⊢ 〈𝑥, 𝑥〉 ∈ V |
| 5 | 4, 1 | fnmpti 5428 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) Fn 𝐴 |
| 6 | df-f 5298 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉):𝐴⟶𝑅 ↔ ((𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) ⊆ 𝑅)) | |
| 7 | 5, 6 | mpbiran 945 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉):𝐴⟶𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) ⊆ 𝑅) |
| 8 | 2, 7 | bitri 184 | . 2 ⊢ (∀𝑥 ∈ 𝐴 〈𝑥, 𝑥〉 ∈ 𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) ⊆ 𝑅) |
| 9 | df-br 4063 | . . 3 ⊢ (𝑥𝑅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ 𝑅) | |
| 10 | 9 | ralbii 2516 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥𝑅𝑥 ↔ ∀𝑥 ∈ 𝐴 〈𝑥, 𝑥〉 ∈ 𝑅) |
| 11 | mptresid 5035 | . . . . 5 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) | |
| 12 | 11 | eqcomi 2213 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = ( I ↾ 𝐴) |
| 13 | 3 | fnasrn 5786 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) |
| 14 | 12, 13 | eqtr3i 2232 | . . 3 ⊢ ( I ↾ 𝐴) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) |
| 15 | 14 | sseq1i 3230 | . 2 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) ⊆ 𝑅) |
| 16 | 8, 10, 15 | 3bitr4ri 213 | 1 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2180 ∀wral 2488 ⊆ wss 3177 〈cop 3649 class class class wbr 4062 ↦ cmpt 4124 I cid 4356 ran crn 4697 ↾ cres 4698 Fn wfn 5289 ⟶wf 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |