ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2other2 GIF version

Theorem en2other2 7000
Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
en2other2 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = 𝑋)

Proof of Theorem en2other2
StepHypRef Expression
1 en2eleq 6999 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})})
2 prcom 3565 . . . . . . 7 {𝑋, (𝑃 ∖ {𝑋})} = { (𝑃 ∖ {𝑋}), 𝑋}
31, 2syl6eq 2163 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = { (𝑃 ∖ {𝑋}), 𝑋})
43difeq1d 3159 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = ({ (𝑃 ∖ {𝑋}), 𝑋} ∖ { (𝑃 ∖ {𝑋})}))
5 difprsnss 3624 . . . . 5 ({ (𝑃 ∖ {𝑋}), 𝑋} ∖ { (𝑃 ∖ {𝑋})}) ⊆ {𝑋}
64, 5syl6eqss 3115 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) ⊆ {𝑋})
7 simpl 108 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋𝑃)
8 1onn 6370 . . . . . . . . . 10 1o ∈ ω
98a1i 9 . . . . . . . . 9 ((𝑋𝑃𝑃 ≈ 2o) → 1o ∈ ω)
10 simpr 109 . . . . . . . . . 10 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ 2o)
11 df-2o 6268 . . . . . . . . . 10 2o = suc 1o
1210, 11syl6breq 3934 . . . . . . . . 9 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ suc 1o)
13 dif1en 6726 . . . . . . . . 9 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑋𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o)
149, 12, 7, 13syl3anc 1199 . . . . . . . 8 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o)
15 en1uniel 6652 . . . . . . . 8 ((𝑃 ∖ {𝑋}) ≈ 1o (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}))
16 eldifsni 3618 . . . . . . . 8 ( (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
1714, 15, 163syl 17 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
1817necomd 2368 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋 (𝑃 ∖ {𝑋}))
19 eldifsn 3616 . . . . . 6 (𝑋 ∈ (𝑃 ∖ { (𝑃 ∖ {𝑋})}) ↔ (𝑋𝑃𝑋 (𝑃 ∖ {𝑋})))
207, 18, 19sylanbrc 411 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋 ∈ (𝑃 ∖ { (𝑃 ∖ {𝑋})}))
2120snssd 3631 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋} ⊆ (𝑃 ∖ { (𝑃 ∖ {𝑋})}))
226, 21eqssd 3080 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = {𝑋})
2322unieqd 3713 . 2 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = {𝑋})
24 unisng 3719 . . 3 (𝑋𝑃 {𝑋} = 𝑋)
2524adantr 272 . 2 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋} = 𝑋)
2623, 25eqtrd 2147 1 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463  wne 2282  cdif 3034  {csn 3493  {cpr 3494   cuni 3702   class class class wbr 3895  suc csuc 4247  ωcom 4464  1oc1o 6260  2oc2o 6261  cen 6586
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-1o 6267  df-2o 6268  df-er 6383  df-en 6589  df-fin 6591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator