Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > en2other2 | GIF version |
Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
en2other2 | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2eleq 7113 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) | |
2 | prcom 3635 | . . . . . . 7 ⊢ {𝑋, ∪ (𝑃 ∖ {𝑋})} = {∪ (𝑃 ∖ {𝑋}), 𝑋} | |
3 | 1, 2 | eqtrdi 2206 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {∪ (𝑃 ∖ {𝑋}), 𝑋}) |
4 | 3 | difeq1d 3224 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = ({∪ (𝑃 ∖ {𝑋}), 𝑋} ∖ {∪ (𝑃 ∖ {𝑋})})) |
5 | difprsnss 3694 | . . . . 5 ⊢ ({∪ (𝑃 ∖ {𝑋}), 𝑋} ∖ {∪ (𝑃 ∖ {𝑋})}) ⊆ {𝑋} | |
6 | 4, 5 | eqsstrdi 3180 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) ⊆ {𝑋}) |
7 | simpl 108 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ∈ 𝑃) | |
8 | 1onn 6460 | . . . . . . . . . 10 ⊢ 1o ∈ ω | |
9 | 8 | a1i 9 | . . . . . . . . 9 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 1o ∈ ω) |
10 | simpr 109 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ 2o) | |
11 | df-2o 6358 | . . . . . . . . . 10 ⊢ 2o = suc 1o | |
12 | 10, 11 | breqtrdi 4005 | . . . . . . . . 9 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ suc 1o) |
13 | dif1en 6817 | . . . . . . . . 9 ⊢ ((1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑋 ∈ 𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o) | |
14 | 9, 12, 7, 13 | syl3anc 1220 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o) |
15 | en1uniel 6742 | . . . . . . . 8 ⊢ ((𝑃 ∖ {𝑋}) ≈ 1o → ∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋})) | |
16 | eldifsni 3688 | . . . . . . . 8 ⊢ (∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) → ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋) | |
17 | 14, 15, 16 | 3syl 17 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋) |
18 | 17 | necomd 2413 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ≠ ∪ (𝑃 ∖ {𝑋})) |
19 | eldifsn 3686 | . . . . . 6 ⊢ (𝑋 ∈ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) ↔ (𝑋 ∈ 𝑃 ∧ 𝑋 ≠ ∪ (𝑃 ∖ {𝑋}))) | |
20 | 7, 18, 19 | sylanbrc 414 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ∈ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})})) |
21 | 20 | snssd 3701 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → {𝑋} ⊆ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})})) |
22 | 6, 21 | eqssd 3145 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = {𝑋}) |
23 | 22 | unieqd 3783 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = ∪ {𝑋}) |
24 | unisng 3789 | . . 3 ⊢ (𝑋 ∈ 𝑃 → ∪ {𝑋} = 𝑋) | |
25 | 24 | adantr 274 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ {𝑋} = 𝑋) |
26 | 23, 25 | eqtrd 2190 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 ≠ wne 2327 ∖ cdif 3099 {csn 3560 {cpr 3561 ∪ cuni 3772 class class class wbr 3965 suc csuc 4324 ωcom 4547 1oc1o 6350 2oc2o 6351 ≈ cen 6676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-1o 6357 df-2o 6358 df-er 6473 df-en 6679 df-fin 6681 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |