![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > en2other2 | GIF version |
Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
en2other2 | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2eleq 7255 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) | |
2 | prcom 3694 | . . . . . . 7 ⊢ {𝑋, ∪ (𝑃 ∖ {𝑋})} = {∪ (𝑃 ∖ {𝑋}), 𝑋} | |
3 | 1, 2 | eqtrdi 2242 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {∪ (𝑃 ∖ {𝑋}), 𝑋}) |
4 | 3 | difeq1d 3276 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = ({∪ (𝑃 ∖ {𝑋}), 𝑋} ∖ {∪ (𝑃 ∖ {𝑋})})) |
5 | difprsnss 3756 | . . . . 5 ⊢ ({∪ (𝑃 ∖ {𝑋}), 𝑋} ∖ {∪ (𝑃 ∖ {𝑋})}) ⊆ {𝑋} | |
6 | 4, 5 | eqsstrdi 3231 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) ⊆ {𝑋}) |
7 | simpl 109 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ∈ 𝑃) | |
8 | 1onn 6573 | . . . . . . . . . 10 ⊢ 1o ∈ ω | |
9 | 8 | a1i 9 | . . . . . . . . 9 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 1o ∈ ω) |
10 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ 2o) | |
11 | df-2o 6470 | . . . . . . . . . 10 ⊢ 2o = suc 1o | |
12 | 10, 11 | breqtrdi 4070 | . . . . . . . . 9 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ suc 1o) |
13 | dif1en 6935 | . . . . . . . . 9 ⊢ ((1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑋 ∈ 𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o) | |
14 | 9, 12, 7, 13 | syl3anc 1249 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o) |
15 | en1uniel 6858 | . . . . . . . 8 ⊢ ((𝑃 ∖ {𝑋}) ≈ 1o → ∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋})) | |
16 | eldifsni 3747 | . . . . . . . 8 ⊢ (∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) → ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋) | |
17 | 14, 15, 16 | 3syl 17 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋) |
18 | 17 | necomd 2450 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ≠ ∪ (𝑃 ∖ {𝑋})) |
19 | eldifsn 3745 | . . . . . 6 ⊢ (𝑋 ∈ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) ↔ (𝑋 ∈ 𝑃 ∧ 𝑋 ≠ ∪ (𝑃 ∖ {𝑋}))) | |
20 | 7, 18, 19 | sylanbrc 417 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ∈ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})})) |
21 | 20 | snssd 3763 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → {𝑋} ⊆ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})})) |
22 | 6, 21 | eqssd 3196 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = {𝑋}) |
23 | 22 | unieqd 3846 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = ∪ {𝑋}) |
24 | unisng 3852 | . . 3 ⊢ (𝑋 ∈ 𝑃 → ∪ {𝑋} = 𝑋) | |
25 | 24 | adantr 276 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ {𝑋} = 𝑋) |
26 | 23, 25 | eqtrd 2226 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∖ cdif 3150 {csn 3618 {cpr 3619 ∪ cuni 3835 class class class wbr 4029 suc csuc 4396 ωcom 4622 1oc1o 6462 2oc2o 6463 ≈ cen 6792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-1o 6469 df-2o 6470 df-er 6587 df-en 6795 df-fin 6797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |