| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en2other2 | GIF version | ||
| Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| en2other2 | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2eleq 7316 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) | |
| 2 | prcom 3711 | . . . . . . 7 ⊢ {𝑋, ∪ (𝑃 ∖ {𝑋})} = {∪ (𝑃 ∖ {𝑋}), 𝑋} | |
| 3 | 1, 2 | eqtrdi 2255 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {∪ (𝑃 ∖ {𝑋}), 𝑋}) |
| 4 | 3 | difeq1d 3292 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = ({∪ (𝑃 ∖ {𝑋}), 𝑋} ∖ {∪ (𝑃 ∖ {𝑋})})) |
| 5 | difprsnss 3774 | . . . . 5 ⊢ ({∪ (𝑃 ∖ {𝑋}), 𝑋} ∖ {∪ (𝑃 ∖ {𝑋})}) ⊆ {𝑋} | |
| 6 | 4, 5 | eqsstrdi 3247 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) ⊆ {𝑋}) |
| 7 | simpl 109 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ∈ 𝑃) | |
| 8 | 1onn 6616 | . . . . . . . . . 10 ⊢ 1o ∈ ω | |
| 9 | 8 | a1i 9 | . . . . . . . . 9 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 1o ∈ ω) |
| 10 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ 2o) | |
| 11 | df-2o 6513 | . . . . . . . . . 10 ⊢ 2o = suc 1o | |
| 12 | 10, 11 | breqtrdi 4089 | . . . . . . . . 9 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ suc 1o) |
| 13 | dif1en 6988 | . . . . . . . . 9 ⊢ ((1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑋 ∈ 𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o) | |
| 14 | 9, 12, 7, 13 | syl3anc 1250 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o) |
| 15 | en1uniel 6906 | . . . . . . . 8 ⊢ ((𝑃 ∖ {𝑋}) ≈ 1o → ∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋})) | |
| 16 | eldifsni 3765 | . . . . . . . 8 ⊢ (∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) → ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋) | |
| 17 | 14, 15, 16 | 3syl 17 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋) |
| 18 | 17 | necomd 2463 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ≠ ∪ (𝑃 ∖ {𝑋})) |
| 19 | eldifsn 3763 | . . . . . 6 ⊢ (𝑋 ∈ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) ↔ (𝑋 ∈ 𝑃 ∧ 𝑋 ≠ ∪ (𝑃 ∖ {𝑋}))) | |
| 20 | 7, 18, 19 | sylanbrc 417 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ∈ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})})) |
| 21 | 20 | snssd 3781 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → {𝑋} ⊆ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})})) |
| 22 | 6, 21 | eqssd 3212 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = {𝑋}) |
| 23 | 22 | unieqd 3864 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = ∪ {𝑋}) |
| 24 | unisng 3870 | . . 3 ⊢ (𝑋 ∈ 𝑃 → ∪ {𝑋} = 𝑋) | |
| 25 | 24 | adantr 276 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ {𝑋} = 𝑋) |
| 26 | 23, 25 | eqtrd 2239 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∖ cdif 3165 {csn 3635 {cpr 3636 ∪ cuni 3853 class class class wbr 4048 suc csuc 4417 ωcom 4643 1oc1o 6505 2oc2o 6506 ≈ cen 6835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-1o 6512 df-2o 6513 df-er 6630 df-en 6838 df-fin 6840 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |