| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldm2 | GIF version | ||
| Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| eldm.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eldm2 | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eldm2g 4893 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1516 ∈ wcel 2178 Vcvv 2776 〈cop 3646 dom cdm 4693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-dm 4703 |
| This theorem is referenced by: dmss 4896 opeldm 4900 dmin 4905 dmiun 4906 dmuni 4907 dm0 4911 reldm0 4915 dmrnssfld 4960 dmcoss 4967 dmcosseq 4969 dmres 4999 iss 5024 dmxpss 5132 dmsnopg 5173 relssdmrn 5222 funssres 5332 fun11iun 5565 tfrlemibxssdm 6436 tfr1onlembxssdm 6452 tfrcllembxssdm 6465 fnpr2ob 13287 |
| Copyright terms: Public domain | W3C validator |