Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldm2 | GIF version |
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
eldm.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eldm2 | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eldm2g 4800 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 〈cop 3579 dom cdm 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-dm 4614 |
This theorem is referenced by: dmss 4803 opeldm 4807 dmin 4812 dmiun 4813 dmuni 4814 dm0 4818 reldm0 4822 dmrnssfld 4867 dmcoss 4873 dmcosseq 4875 dmres 4905 iss 4930 dmxpss 5034 dmsnopg 5075 relssdmrn 5124 funssres 5230 fun11iun 5453 tfrlemibxssdm 6295 tfr1onlembxssdm 6311 tfrcllembxssdm 6324 |
Copyright terms: Public domain | W3C validator |