![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldm2 | GIF version |
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
eldm.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eldm2 | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eldm2g 4647 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃wex 1427 ∈ wcel 1439 Vcvv 2622 〈cop 3455 dom cdm 4454 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-v 2624 df-un 3006 df-sn 3458 df-pr 3459 df-op 3461 df-br 3854 df-dm 4464 |
This theorem is referenced by: dmss 4650 opeldm 4654 dmin 4659 dmiun 4660 dmuni 4661 dm0 4665 reldm0 4669 dmrnssfld 4711 dmcoss 4717 dmcosseq 4719 dmres 4749 iss 4773 dmxpss 4876 dmsnopg 4917 relssdmrn 4966 funssres 5071 fun11iun 5289 tfrlemibxssdm 6108 tfr1onlembxssdm 6124 tfrcllembxssdm 6137 |
Copyright terms: Public domain | W3C validator |