| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldm2 | GIF version | ||
| Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| eldm.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eldm2 | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eldm2g 4874 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1515 ∈ wcel 2176 Vcvv 2772 〈cop 3636 dom cdm 4675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-dm 4685 |
| This theorem is referenced by: dmss 4877 opeldm 4881 dmin 4886 dmiun 4887 dmuni 4888 dm0 4892 reldm0 4896 dmrnssfld 4941 dmcoss 4948 dmcosseq 4950 dmres 4980 iss 5005 dmxpss 5113 dmsnopg 5154 relssdmrn 5203 funssres 5313 fun11iun 5543 tfrlemibxssdm 6413 tfr1onlembxssdm 6429 tfrcllembxssdm 6442 fnpr2ob 13172 |
| Copyright terms: Public domain | W3C validator |