ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldm2 GIF version

Theorem eldm2 4707
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
eldm.1 𝐴 ∈ V
Assertion
Ref Expression
eldm2 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵

Proof of Theorem eldm2
StepHypRef Expression
1 eldm.1 . 2 𝐴 ∈ V
2 eldm2g 4705 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
31, 2ax-mp 5 1 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 104  wex 1453  wcel 1465  Vcvv 2660  cop 3500  dom cdm 4509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-v 2662  df-un 3045  df-sn 3503  df-pr 3504  df-op 3506  df-br 3900  df-dm 4519
This theorem is referenced by:  dmss  4708  opeldm  4712  dmin  4717  dmiun  4718  dmuni  4719  dm0  4723  reldm0  4727  dmrnssfld  4772  dmcoss  4778  dmcosseq  4780  dmres  4810  iss  4835  dmxpss  4939  dmsnopg  4980  relssdmrn  5029  funssres  5135  fun11iun  5356  tfrlemibxssdm  6192  tfr1onlembxssdm  6208  tfrcllembxssdm  6221
  Copyright terms: Public domain W3C validator