ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldm2 GIF version

Theorem eldm2 4895
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
eldm.1 𝐴 ∈ V
Assertion
Ref Expression
eldm2 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵

Proof of Theorem eldm2
StepHypRef Expression
1 eldm.1 . 2 𝐴 ∈ V
2 eldm2g 4893 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
31, 2ax-mp 5 1 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wex 1516  wcel 2178  Vcvv 2776  cop 3646  dom cdm 4693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-dm 4703
This theorem is referenced by:  dmss  4896  opeldm  4900  dmin  4905  dmiun  4906  dmuni  4907  dm0  4911  reldm0  4915  dmrnssfld  4960  dmcoss  4967  dmcosseq  4969  dmres  4999  iss  5024  dmxpss  5132  dmsnopg  5173  relssdmrn  5222  funssres  5332  fun11iun  5565  tfrlemibxssdm  6436  tfr1onlembxssdm  6452  tfrcllembxssdm  6465  fnpr2ob  13287
  Copyright terms: Public domain W3C validator