ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldm2 GIF version

Theorem eldm2 4601
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
eldm.1 𝐴 ∈ V
Assertion
Ref Expression
eldm2 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵

Proof of Theorem eldm2
StepHypRef Expression
1 eldm.1 . 2 𝐴 ∈ V
2 eldm2g 4599 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
31, 2ax-mp 7 1 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 103  wex 1424  wcel 1436  Vcvv 2615  cop 3434  dom cdm 4410
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2617  df-un 2992  df-sn 3437  df-pr 3438  df-op 3440  df-br 3821  df-dm 4420
This theorem is referenced by:  dmss  4602  opeldm  4606  dmin  4611  dmiun  4612  dmuni  4613  dm0  4617  reldm0  4621  dmrnssfld  4663  dmcoss  4669  dmcosseq  4671  dmres  4700  iss  4724  dmxpss  4824  dmsnopg  4865  relssdmrn  4914  funssres  5018  fun11iun  5231  tfrlemibxssdm  6040  tfr1onlembxssdm  6056  tfrcllembxssdm  6069
  Copyright terms: Public domain W3C validator