ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmff GIF version

Theorem lmff 13043
Description: If 𝐹 converges, there is some upper integer set on which 𝐹 is a total function. (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
lmff.1 𝑍 = (ℤ𝑀)
lmff.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmff.4 (𝜑𝑀 ∈ ℤ)
lmff.5 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Assertion
Ref Expression
lmff (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
Distinct variable groups:   𝑗,𝐹   𝑗,𝐽   𝑗,𝑀   𝜑,𝑗   𝑗,𝑋   𝑗,𝑍

Proof of Theorem lmff
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmff.5 . . . . . 6 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
2 eldm2g 4807 . . . . . . 7 (𝐹 ∈ dom (⇝𝑡𝐽) → (𝐹 ∈ dom (⇝𝑡𝐽) ↔ ∃𝑦𝐹, 𝑦⟩ ∈ (⇝𝑡𝐽)))
32ibi 175 . . . . . 6 (𝐹 ∈ dom (⇝𝑡𝐽) → ∃𝑦𝐹, 𝑦⟩ ∈ (⇝𝑡𝐽))
41, 3syl 14 . . . . 5 (𝜑 → ∃𝑦𝐹, 𝑦⟩ ∈ (⇝𝑡𝐽))
5 df-br 3990 . . . . . 6 (𝐹(⇝𝑡𝐽)𝑦 ↔ ⟨𝐹, 𝑦⟩ ∈ (⇝𝑡𝐽))
65exbii 1598 . . . . 5 (∃𝑦 𝐹(⇝𝑡𝐽)𝑦 ↔ ∃𝑦𝐹, 𝑦⟩ ∈ (⇝𝑡𝐽))
74, 6sylibr 133 . . . 4 (𝜑 → ∃𝑦 𝐹(⇝𝑡𝐽)𝑦)
8 lmff.3 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
9 lmcl 13039 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑦) → 𝑦𝑋)
108, 9sylan 281 . . . . 5 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → 𝑦𝑋)
11 eleq2 2234 . . . . . . 7 (𝑗 = 𝑋 → (𝑦𝑗𝑦𝑋))
12 feq3 5332 . . . . . . . 8 (𝑗 = 𝑋 → ((𝐹𝑥):𝑥𝑗 ↔ (𝐹𝑥):𝑥𝑋))
1312rexbidv 2471 . . . . . . 7 (𝑗 = 𝑋 → (∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑗 ↔ ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋))
1411, 13imbi12d 233 . . . . . 6 (𝑗 = 𝑋 → ((𝑦𝑗 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑗) ↔ (𝑦𝑋 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋)))
158lmbr 13007 . . . . . . . 8 (𝜑 → (𝐹(⇝𝑡𝐽)𝑦 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑗𝐽 (𝑦𝑗 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑗))))
1615biimpa 294 . . . . . . 7 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑗𝐽 (𝑦𝑗 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑗)))
1716simp3d 1006 . . . . . 6 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → ∀𝑗𝐽 (𝑦𝑗 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑗))
18 toponmax 12817 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
198, 18syl 14 . . . . . . 7 (𝜑𝑋𝐽)
2019adantr 274 . . . . . 6 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → 𝑋𝐽)
2114, 17, 20rspcdva 2839 . . . . 5 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → (𝑦𝑋 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋))
2210, 21mpd 13 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋)
237, 22exlimddv 1891 . . 3 (𝜑 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋)
24 uzf 9490 . . . 4 :ℤ⟶𝒫 ℤ
25 ffn 5347 . . . 4 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
26 reseq2 4886 . . . . . 6 (𝑥 = (ℤ𝑗) → (𝐹𝑥) = (𝐹 ↾ (ℤ𝑗)))
27 id 19 . . . . . 6 (𝑥 = (ℤ𝑗) → 𝑥 = (ℤ𝑗))
2826, 27feq12d 5337 . . . . 5 (𝑥 = (ℤ𝑗) → ((𝐹𝑥):𝑥𝑋 ↔ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋))
2928rexrn 5633 . . . 4 (ℤ Fn ℤ → (∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋))
3024, 25, 29mp2b 8 . . 3 (∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
3123, 30sylib 121 . 2 (𝜑 → ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
32 lmff.4 . . . 4 (𝜑𝑀 ∈ ℤ)
33 lmff.1 . . . . 5 𝑍 = (ℤ𝑀)
3433rexuz3 10954 . . . 4 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
3532, 34syl 14 . . 3 (𝜑 → (∃𝑗𝑍𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
3616simp1d 1004 . . . . . . 7 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → 𝐹 ∈ (𝑋pm ℂ))
377, 36exlimddv 1891 . . . . . 6 (𝜑𝐹 ∈ (𝑋pm ℂ))
38 pmfun 6646 . . . . . 6 (𝐹 ∈ (𝑋pm ℂ) → Fun 𝐹)
3937, 38syl 14 . . . . 5 (𝜑 → Fun 𝐹)
40 ffvresb 5659 . . . . 5 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋 ↔ ∀𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
4139, 40syl 14 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋 ↔ ∀𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
4241rexbidv 2471 . . 3 (𝜑 → (∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋 ↔ ∃𝑗𝑍𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
4341rexbidv 2471 . . 3 (𝜑 → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
4435, 42, 433bitr4d 219 . 2 (𝜑 → (∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋))
4531, 44mpbird 166 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  𝒫 cpw 3566  cop 3586   class class class wbr 3989  dom cdm 4611  ran crn 4612  cres 4613  Fun wfun 5192   Fn wfn 5193  wf 5194  cfv 5198  (class class class)co 5853  pm cpm 6627  cc 7772  cz 9212  cuz 9487  TopOnctopon 12802  𝑡clm 12981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pm 6629  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-top 12790  df-topon 12803  df-lm 12984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator