![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldm | GIF version |
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.) |
Ref | Expression |
---|---|
eldm.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eldm | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eldmg 4662 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃wex 1433 ∈ wcel 1445 Vcvv 2633 class class class wbr 3867 dom cdm 4467 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-un 3017 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 df-dm 4477 |
This theorem is referenced by: dmi 4682 dmcoss 4734 dmcosseq 4736 dminss 4879 dmsnm 4930 dffun7 5076 dffun8 5077 fnres 5164 fndmdif 5443 reldmtpos 6056 dmtpos 6059 tfrexlem 6137 |
Copyright terms: Public domain | W3C validator |