Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  epelc GIF version

Theorem epelc 4171
 Description: The epsilon relationship and the membership relation are the same. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
epelc.1 𝐵 ∈ V
Assertion
Ref Expression
epelc (𝐴 E 𝐵𝐴𝐵)

Proof of Theorem epelc
StepHypRef Expression
1 epelc.1 . 2 𝐵 ∈ V
2 epelg 4170 . 2 (𝐵 ∈ V → (𝐴 E 𝐵𝐴𝐵))
31, 2ax-mp 7 1 (𝐴 E 𝐵𝐴𝐵)
 Colors of variables: wff set class Syntax hints:   ↔ wb 104   ∈ wcel 1461  Vcvv 2655   class class class wbr 3893   E cep 4167 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089 This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-eprel 4169 This theorem is referenced by:  epel  4172  epini  4866  ecid  6444  ordiso2  6870
 Copyright terms: Public domain W3C validator