ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epelc GIF version

Theorem epelc 4316
Description: The epsilon relationship and the membership relation are the same. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
epelc.1 𝐵 ∈ V
Assertion
Ref Expression
epelc (𝐴 E 𝐵𝐴𝐵)

Proof of Theorem epelc
StepHypRef Expression
1 epelc.1 . 2 𝐵 ∈ V
2 epelg 4315 . 2 (𝐵 ∈ V → (𝐴 E 𝐵𝐴𝐵))
31, 2ax-mp 5 1 (𝐴 E 𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2160  Vcvv 2756   class class class wbr 4025   E cep 4312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4143  ax-pow 4199  ax-pr 4234
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2758  df-un 3153  df-in 3155  df-ss 3162  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-br 4026  df-opab 4087  df-eprel 4314
This theorem is referenced by:  epel  4317  epini  5024  ecid  6639  ordiso2  7080
  Copyright terms: Public domain W3C validator