ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdisj GIF version

Theorem fzdisj 10244
Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzdisj (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅)

Proof of Theorem fzdisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3387 . . . 4 (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) ↔ (𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)))
2 elfzel1 10216 . . . . . . . 8 (𝑥 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
32adantl 277 . . . . . . 7 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
43zred 9565 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ)
5 elfzelz 10217 . . . . . . . 8 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
65zred 9565 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
76adantl 277 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ)
8 elfzel2 10215 . . . . . . . 8 (𝑥 ∈ (𝐽...𝐾) → 𝐾 ∈ ℤ)
98adantr 276 . . . . . . 7 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ)
109zred 9565 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℝ)
11 elfzle1 10219 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑀𝑥)
1211adantl 277 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀𝑥)
13 elfzle2 10220 . . . . . . 7 (𝑥 ∈ (𝐽...𝐾) → 𝑥𝐾)
1413adantr 276 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥𝐾)
154, 7, 10, 12, 14letrd 8266 . . . . 5 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀𝐾)
164, 10lenltd 8260 . . . . 5 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑀𝐾 ↔ ¬ 𝐾 < 𝑀))
1715, 16mpbid 147 . . . 4 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀)
181, 17sylbi 121 . . 3 (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀)
1918con2i 630 . 2 (𝐾 < 𝑀 → ¬ 𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)))
2019eq0rdv 3536 1 (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1395  wcel 2200  cin 3196  c0 3491   class class class wbr 4082  (class class class)co 6000  cr 7994   < clt 8177  cle 8178  cz 9442  ...cfz 10200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-ltwlin 8108
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-neg 8316  df-z 9443  df-uz 9719  df-fz 10201
This theorem is referenced by:  fsumm1  11922  fsum1p  11924  mertenslemi1  12041  fprod1p  12105  fprodeq0  12123  strleund  13131  strleun  13132  gausslemma2dlem4  15737  gausslemma2dlem6  15740  lgsquadlem2  15751  cvgcmp2nlemabs  16359
  Copyright terms: Public domain W3C validator