Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemsuc GIF version

Theorem nninfsellemsuc 15215
Description: Lemma for nninfself 15216. (Contributed by Jim Kingdon, 6-Aug-2022.)
Assertion
Ref Expression
nninfsellemsuc ((𝑄 ∈ (2o𝑚) ∧ 𝐽 ∈ ω) → if(∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ⊆ if(∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
Distinct variable groups:   𝑘,𝐽   𝑄,𝑘   𝑖,𝑘
Allowed substitution hints:   𝑄(𝑖)   𝐽(𝑖)

Proof of Theorem nninfsellemsuc
StepHypRef Expression
1 peano2 4612 . . . . 5 (𝐽 ∈ ω → suc 𝐽 ∈ ω)
2 nninfsellemcl 15214 . . . . . 6 ((𝑄 ∈ (2o𝑚) ∧ suc 𝐽 ∈ ω) → if(∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o)
3 el2oss1o 6467 . . . . . 6 (if(∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o → if(∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ⊆ 1o)
42, 3syl 14 . . . . 5 ((𝑄 ∈ (2o𝑚) ∧ suc 𝐽 ∈ ω) → if(∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ⊆ 1o)
51, 4sylan2 286 . . . 4 ((𝑄 ∈ (2o𝑚) ∧ 𝐽 ∈ ω) → if(∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ⊆ 1o)
65adantr 276 . . 3 (((𝑄 ∈ (2o𝑚) ∧ 𝐽 ∈ ω) ∧ ∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → if(∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ⊆ 1o)
7 iftrue 3554 . . . 4 (∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o → if(∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = 1o)
87adantl 277 . . 3 (((𝑄 ∈ (2o𝑚) ∧ 𝐽 ∈ ω) ∧ ∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → if(∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = 1o)
96, 8sseqtrrd 3209 . 2 (((𝑄 ∈ (2o𝑚) ∧ 𝐽 ∈ ω) ∧ ∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → if(∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ⊆ if(∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
10 simpl 109 . . . . . . 7 ((∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∧ ∀𝑘 ∈ {suc 𝐽} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → ∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
1110con3i 633 . . . . . 6 (¬ ∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o → ¬ (∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∧ ∀𝑘 ∈ {suc 𝐽} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
12 df-suc 4389 . . . . . . . 8 suc suc 𝐽 = (suc 𝐽 ∪ {suc 𝐽})
1312raleqi 2690 . . . . . . 7 (∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ (suc 𝐽 ∪ {suc 𝐽})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
14 ralunb 3331 . . . . . . 7 (∀𝑘 ∈ (suc 𝐽 ∪ {suc 𝐽})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∧ ∀𝑘 ∈ {suc 𝐽} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
1513, 14bitri 184 . . . . . 6 (∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∧ ∀𝑘 ∈ {suc 𝐽} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
1611, 15sylnibr 678 . . . . 5 (¬ ∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o → ¬ ∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
1716iffalsed 3559 . . . 4 (¬ ∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o → if(∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = ∅)
18 0ss 3476 . . . 4 ∅ ⊆ if(∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)
1917, 18eqsstrdi 3222 . . 3 (¬ ∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o → if(∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ⊆ if(∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
2019adantl 277 . 2 (((𝑄 ∈ (2o𝑚) ∧ 𝐽 ∈ ω) ∧ ¬ ∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → if(∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ⊆ if(∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
21 nninfsellemdc 15213 . . 3 ((𝑄 ∈ (2o𝑚) ∧ 𝐽 ∈ ω) → DECID𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
22 exmiddc 837 . . 3 (DECID𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o → (∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∨ ¬ ∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
2321, 22syl 14 . 2 ((𝑄 ∈ (2o𝑚) ∧ 𝐽 ∈ ω) → (∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∨ ¬ ∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
249, 20, 23mpjaodan 799 1 ((𝑄 ∈ (2o𝑚) ∧ 𝐽 ∈ ω) → if(∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ⊆ if(∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2160  wral 2468  cun 3142  wss 3144  c0 3437  ifcif 3549  {csn 3607  cmpt 4079  suc csuc 4383  ωcom 4607  cfv 5235  (class class class)co 5895  1oc1o 6433  2oc2o 6434  𝑚 cmap 6673  xnninf 7147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1o 6440  df-2o 6441  df-map 6675  df-nninf 7148
This theorem is referenced by:  nninfself  15216
  Copyright terms: Public domain W3C validator