ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemkh GIF version

Theorem ennnfonelemkh 12783
Description: Lemma for ennnfone 12796. Because we add zero or one entries for each new index, the length of each sequence is no greater than its index. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemkh.p (𝜑𝑃 ∈ ℕ0)
Assertion
Ref Expression
ennnfonelemkh (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑗,𝐻,𝑥,𝑦   𝑗,𝐽   𝑗,𝑁,𝑥,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝑃(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑘,𝑛)

Proof of Theorem ennnfonelemkh
Dummy variables 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemkh.p . 2 (𝜑𝑃 ∈ ℕ0)
2 fveq2 5576 . . . . . . 7 (𝑤 = 0 → (𝐻𝑤) = (𝐻‘0))
32dmeqd 4880 . . . . . 6 (𝑤 = 0 → dom (𝐻𝑤) = dom (𝐻‘0))
4 fveq2 5576 . . . . . 6 (𝑤 = 0 → (𝑁𝑤) = (𝑁‘0))
53, 4sseq12d 3224 . . . . 5 (𝑤 = 0 → (dom (𝐻𝑤) ⊆ (𝑁𝑤) ↔ dom (𝐻‘0) ⊆ (𝑁‘0)))
65imbi2d 230 . . . 4 (𝑤 = 0 → ((𝜑 → dom (𝐻𝑤) ⊆ (𝑁𝑤)) ↔ (𝜑 → dom (𝐻‘0) ⊆ (𝑁‘0))))
7 fveq2 5576 . . . . . . 7 (𝑤 = 𝑚 → (𝐻𝑤) = (𝐻𝑚))
87dmeqd 4880 . . . . . 6 (𝑤 = 𝑚 → dom (𝐻𝑤) = dom (𝐻𝑚))
9 fveq2 5576 . . . . . 6 (𝑤 = 𝑚 → (𝑁𝑤) = (𝑁𝑚))
108, 9sseq12d 3224 . . . . 5 (𝑤 = 𝑚 → (dom (𝐻𝑤) ⊆ (𝑁𝑤) ↔ dom (𝐻𝑚) ⊆ (𝑁𝑚)))
1110imbi2d 230 . . . 4 (𝑤 = 𝑚 → ((𝜑 → dom (𝐻𝑤) ⊆ (𝑁𝑤)) ↔ (𝜑 → dom (𝐻𝑚) ⊆ (𝑁𝑚))))
12 fveq2 5576 . . . . . . 7 (𝑤 = (𝑚 + 1) → (𝐻𝑤) = (𝐻‘(𝑚 + 1)))
1312dmeqd 4880 . . . . . 6 (𝑤 = (𝑚 + 1) → dom (𝐻𝑤) = dom (𝐻‘(𝑚 + 1)))
14 fveq2 5576 . . . . . 6 (𝑤 = (𝑚 + 1) → (𝑁𝑤) = (𝑁‘(𝑚 + 1)))
1513, 14sseq12d 3224 . . . . 5 (𝑤 = (𝑚 + 1) → (dom (𝐻𝑤) ⊆ (𝑁𝑤) ↔ dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1))))
1615imbi2d 230 . . . 4 (𝑤 = (𝑚 + 1) → ((𝜑 → dom (𝐻𝑤) ⊆ (𝑁𝑤)) ↔ (𝜑 → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))))
17 fveq2 5576 . . . . . . 7 (𝑤 = 𝑃 → (𝐻𝑤) = (𝐻𝑃))
1817dmeqd 4880 . . . . . 6 (𝑤 = 𝑃 → dom (𝐻𝑤) = dom (𝐻𝑃))
19 fveq2 5576 . . . . . 6 (𝑤 = 𝑃 → (𝑁𝑤) = (𝑁𝑃))
2018, 19sseq12d 3224 . . . . 5 (𝑤 = 𝑃 → (dom (𝐻𝑤) ⊆ (𝑁𝑤) ↔ dom (𝐻𝑃) ⊆ (𝑁𝑃)))
2120imbi2d 230 . . . 4 (𝑤 = 𝑃 → ((𝜑 → dom (𝐻𝑤) ⊆ (𝑁𝑤)) ↔ (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃))))
22 ennnfonelemh.dceq . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
23 ennnfonelemh.f . . . . . . . . 9 (𝜑𝐹:ω–onto𝐴)
24 ennnfonelemh.ne . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
25 ennnfonelemh.g . . . . . . . . 9 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
26 ennnfonelemh.n . . . . . . . . 9 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
27 ennnfonelemh.j . . . . . . . . 9 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
28 ennnfonelemh.h . . . . . . . . 9 𝐻 = seq0(𝐺, 𝐽)
2922, 23, 24, 25, 26, 27, 28ennnfonelem0 12776 . . . . . . . 8 (𝜑 → (𝐻‘0) = ∅)
3029dmeqd 4880 . . . . . . 7 (𝜑 → dom (𝐻‘0) = dom ∅)
31 dm0 4892 . . . . . . 7 dom ∅ = ∅
3230, 31eqtrdi 2254 . . . . . 6 (𝜑 → dom (𝐻‘0) = ∅)
33 0ss 3499 . . . . . 6 ∅ ⊆ (𝑁‘0)
3432, 33eqsstrdi 3245 . . . . 5 (𝜑 → dom (𝐻‘0) ⊆ (𝑁‘0))
3534a1i 9 . . . 4 (0 ∈ ℤ → (𝜑 → dom (𝐻‘0) ⊆ (𝑁‘0)))
3626frechashgf1o 10573 . . . . . . . . . . . . . 14 𝑁:ω–1-1-onto→ℕ0
37 f1of 5522 . . . . . . . . . . . . . 14 (𝑁:ω–1-1-onto→ℕ0𝑁:ω⟶ℕ0)
3836, 37mp1i 10 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → 𝑁:ω⟶ℕ0)
3922ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
4023ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝐹:ω–onto𝐴)
4124ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
42 simplr 528 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝑚 ∈ (ℤ‘0))
43 nn0uz 9683 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
4442, 43eleqtrrdi 2299 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝑚 ∈ ℕ0)
45 peano2nn0 9335 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
4644, 45syl 14 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑚 + 1) ∈ ℕ0)
4739, 40, 41, 25, 26, 27, 28, 46ennnfonelemom 12779 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → dom (𝐻‘(𝑚 + 1)) ∈ ω)
4847adantr 276 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ∈ ω)
4938, 48ffvelcdmd 5716 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ∈ ℕ0)
5049nn0red 9349 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ∈ ℝ)
5144nn0red 9349 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝑚 ∈ ℝ)
5251adantr 276 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → 𝑚 ∈ ℝ)
53 peano2re 8208 . . . . . . . . . . . 12 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
5452, 53syl 14 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑚 + 1) ∈ ℝ)
5539, 40, 41, 25, 26, 27, 28, 44ennnfonelemp1 12777 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝐻‘(𝑚 + 1)) = if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})))
5655adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐻‘(𝑚 + 1)) = if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})))
57 simpr 110 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)))
5857iftrued 3578 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})) = (𝐻𝑚))
5956, 58eqtrd 2238 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐻‘(𝑚 + 1)) = (𝐻𝑚))
6059dmeqd 4880 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = dom (𝐻𝑚))
6160fveq2d 5580 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) = (𝑁‘dom (𝐻𝑚)))
62 simpr 110 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → dom (𝐻𝑚) ⊆ (𝑁𝑚))
63 0zd 9384 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 0 ∈ ℤ)
6439, 40, 41, 25, 26, 27, 28, 44ennnfonelemom 12779 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → dom (𝐻𝑚) ∈ ω)
65 f1ocnv 5535 . . . . . . . . . . . . . . . . . . . 20 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
6636, 65ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑁:ℕ01-1-onto→ω
67 f1of 5522 . . . . . . . . . . . . . . . . . . 19 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
6866, 67mp1i 10 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ0𝑁:ℕ0⟶ω)
69 id 19 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ0𝑚 ∈ ℕ0)
7068, 69ffvelcdmd 5716 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0 → (𝑁𝑚) ∈ ω)
7144, 70syl 14 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁𝑚) ∈ ω)
7263, 26, 64, 71frec2uzled 10574 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (dom (𝐻𝑚) ⊆ (𝑁𝑚) ↔ (𝑁‘dom (𝐻𝑚)) ≤ (𝑁‘(𝑁𝑚))))
7362, 72mpbid 147 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘dom (𝐻𝑚)) ≤ (𝑁‘(𝑁𝑚)))
74 f1ocnvfv2 5847 . . . . . . . . . . . . . . 15 ((𝑁:ω–1-1-onto→ℕ0𝑚 ∈ ℕ0) → (𝑁‘(𝑁𝑚)) = 𝑚)
7536, 44, 74sylancr 414 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘(𝑁𝑚)) = 𝑚)
7673, 75breqtrd 4070 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘dom (𝐻𝑚)) ≤ 𝑚)
7776adantr 276 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻𝑚)) ≤ 𝑚)
7861, 77eqbrtrd 4066 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ 𝑚)
7952lep1d 9004 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → 𝑚 ≤ (𝑚 + 1))
8050, 52, 54, 78, 79letrd 8196 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑚 + 1))
81 f1ocnvfv2 5847 . . . . . . . . . . . 12 ((𝑁:ω–1-1-onto→ℕ0 ∧ (𝑚 + 1) ∈ ℕ0) → (𝑁‘(𝑁‘(𝑚 + 1))) = (𝑚 + 1))
8236, 46, 81sylancr 414 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘(𝑁‘(𝑚 + 1))) = (𝑚 + 1))
8382adantr 276 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘(𝑁‘(𝑚 + 1))) = (𝑚 + 1))
8480, 83breqtrrd 4072 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1))))
8566, 67mp1i 10 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝑁:ℕ0⟶ω)
8685, 46ffvelcdmd 5716 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘(𝑚 + 1)) ∈ ω)
8763, 26, 47, 86frec2uzled 10574 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)) ↔ (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1)))))
8887adantr 276 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)) ↔ (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1)))))
8984, 88mpbird 167 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))
9055adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐻‘(𝑚 + 1)) = if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})))
91 simpr 110 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)))
9291iffalsed 3581 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})) = ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}))
9390, 92eqtrd 2238 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐻‘(𝑚 + 1)) = ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}))
9493dmeqd 4880 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = dom ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}))
95 dmun 4885 . . . . . . . . . . . . . . . 16 dom ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}) = (dom (𝐻𝑚) ∪ dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})
9694, 95eqtrdi 2254 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = (dom (𝐻𝑚) ∪ dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}))
97 fof 5498 . . . . . . . . . . . . . . . . . . . 20 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
9840, 97syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝐹:ω⟶𝐴)
9998, 71ffvelcdmd 5716 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝐹‘(𝑁𝑚)) ∈ 𝐴)
10099adantr 276 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐹‘(𝑁𝑚)) ∈ 𝐴)
101 dmsnopg 5154 . . . . . . . . . . . . . . . . 17 ((𝐹‘(𝑁𝑚)) ∈ 𝐴 → dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩} = {dom (𝐻𝑚)})
102100, 101syl 14 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩} = {dom (𝐻𝑚)})
103102uneq2d 3327 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻𝑚) ∪ dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}) = (dom (𝐻𝑚) ∪ {dom (𝐻𝑚)}))
10496, 103eqtrd 2238 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = (dom (𝐻𝑚) ∪ {dom (𝐻𝑚)}))
105 df-suc 4418 . . . . . . . . . . . . . 14 suc dom (𝐻𝑚) = (dom (𝐻𝑚) ∪ {dom (𝐻𝑚)})
106104, 105eqtr4di 2256 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = suc dom (𝐻𝑚))
107 simplr 528 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻𝑚) ⊆ (𝑁𝑚))
10871adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁𝑚) ∈ ω)
109 nnsucsssuc 6578 . . . . . . . . . . . . . . 15 ((dom (𝐻𝑚) ∈ ω ∧ (𝑁𝑚) ∈ ω) → (dom (𝐻𝑚) ⊆ (𝑁𝑚) ↔ suc dom (𝐻𝑚) ⊆ suc (𝑁𝑚)))
11064, 108, 109syl2an2r 595 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻𝑚) ⊆ (𝑁𝑚) ↔ suc dom (𝐻𝑚) ⊆ suc (𝑁𝑚)))
111107, 110mpbid 147 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → suc dom (𝐻𝑚) ⊆ suc (𝑁𝑚))
112106, 111eqsstrd 3229 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ⊆ suc (𝑁𝑚))
113 0zd 9384 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → 0 ∈ ℤ)
11447adantr 276 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ∈ ω)
115 peano2 4643 . . . . . . . . . . . . . 14 ((𝑁𝑚) ∈ ω → suc (𝑁𝑚) ∈ ω)
116108, 115syl 14 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → suc (𝑁𝑚) ∈ ω)
117113, 26, 114, 116frec2uzled 10574 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻‘(𝑚 + 1)) ⊆ suc (𝑁𝑚) ↔ (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘suc (𝑁𝑚))))
118112, 117mpbid 147 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘suc (𝑁𝑚)))
119113, 26, 108frec2uzsucd 10546 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘suc (𝑁𝑚)) = ((𝑁‘(𝑁𝑚)) + 1))
12075adantr 276 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘(𝑁𝑚)) = 𝑚)
121120oveq1d 5959 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → ((𝑁‘(𝑁𝑚)) + 1) = (𝑚 + 1))
122119, 121eqtrd 2238 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘suc (𝑁𝑚)) = (𝑚 + 1))
123118, 122breqtrd 4070 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑚 + 1))
12482adantr 276 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘(𝑁‘(𝑚 + 1))) = (𝑚 + 1))
125123, 124breqtrrd 4072 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1))))
12686adantr 276 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘(𝑚 + 1)) ∈ ω)
127113, 26, 114, 126frec2uzled 10574 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)) ↔ (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1)))))
128125, 127mpbird 167 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))
12939, 40, 71ennnfonelemdc 12770 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → DECID (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)))
130 exmiddc 838 . . . . . . . . 9 (DECID (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)) → ((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)) ∨ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))))
131129, 130syl 14 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → ((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)) ∨ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))))
13289, 128, 131mpjaodan 800 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))
133132ex 115 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘0)) → (dom (𝐻𝑚) ⊆ (𝑁𝑚) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1))))
134133expcom 116 . . . . 5 (𝑚 ∈ (ℤ‘0) → (𝜑 → (dom (𝐻𝑚) ⊆ (𝑁𝑚) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))))
135134a2d 26 . . . 4 (𝑚 ∈ (ℤ‘0) → ((𝜑 → dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝜑 → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))))
1366, 11, 16, 21, 35, 135uzind4 9709 . . 3 (𝑃 ∈ (ℤ‘0) → (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃)))
137136, 43eleq2s 2300 . 2 (𝑃 ∈ ℕ0 → (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃)))
1381, 137mpcom 36 1 (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2176  wne 2376  wral 2484  wrex 2485  cun 3164  wss 3166  c0 3460  ifcif 3571  {csn 3633  cop 3636   class class class wbr 4044  cmpt 4105  suc csuc 4412  ωcom 4638  ccnv 4674  dom cdm 4675  cima 4678  wf 5267  ontowfo 5269  1-1-ontowf1o 5270  cfv 5271  (class class class)co 5944  cmpo 5946  freccfrec 6476  pm cpm 6736  cr 7924  0cc0 7925  1c1 7926   + caddc 7928  cle 8108  cmin 8243  0cn0 9295  cz 9372  cuz 9648  seqcseq 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pm 6738  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-seqfrec 10593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator