ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemkh GIF version

Theorem ennnfonelemkh 12572
Description: Lemma for ennnfone 12585. Because we add zero or one entries for each new index, the length of each sequence is no greater than its index. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemkh.p (𝜑𝑃 ∈ ℕ0)
Assertion
Ref Expression
ennnfonelemkh (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑗,𝐻,𝑥,𝑦   𝑗,𝐽   𝑗,𝑁,𝑥,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝑃(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑘,𝑛)

Proof of Theorem ennnfonelemkh
Dummy variables 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemkh.p . 2 (𝜑𝑃 ∈ ℕ0)
2 fveq2 5555 . . . . . . 7 (𝑤 = 0 → (𝐻𝑤) = (𝐻‘0))
32dmeqd 4865 . . . . . 6 (𝑤 = 0 → dom (𝐻𝑤) = dom (𝐻‘0))
4 fveq2 5555 . . . . . 6 (𝑤 = 0 → (𝑁𝑤) = (𝑁‘0))
53, 4sseq12d 3211 . . . . 5 (𝑤 = 0 → (dom (𝐻𝑤) ⊆ (𝑁𝑤) ↔ dom (𝐻‘0) ⊆ (𝑁‘0)))
65imbi2d 230 . . . 4 (𝑤 = 0 → ((𝜑 → dom (𝐻𝑤) ⊆ (𝑁𝑤)) ↔ (𝜑 → dom (𝐻‘0) ⊆ (𝑁‘0))))
7 fveq2 5555 . . . . . . 7 (𝑤 = 𝑚 → (𝐻𝑤) = (𝐻𝑚))
87dmeqd 4865 . . . . . 6 (𝑤 = 𝑚 → dom (𝐻𝑤) = dom (𝐻𝑚))
9 fveq2 5555 . . . . . 6 (𝑤 = 𝑚 → (𝑁𝑤) = (𝑁𝑚))
108, 9sseq12d 3211 . . . . 5 (𝑤 = 𝑚 → (dom (𝐻𝑤) ⊆ (𝑁𝑤) ↔ dom (𝐻𝑚) ⊆ (𝑁𝑚)))
1110imbi2d 230 . . . 4 (𝑤 = 𝑚 → ((𝜑 → dom (𝐻𝑤) ⊆ (𝑁𝑤)) ↔ (𝜑 → dom (𝐻𝑚) ⊆ (𝑁𝑚))))
12 fveq2 5555 . . . . . . 7 (𝑤 = (𝑚 + 1) → (𝐻𝑤) = (𝐻‘(𝑚 + 1)))
1312dmeqd 4865 . . . . . 6 (𝑤 = (𝑚 + 1) → dom (𝐻𝑤) = dom (𝐻‘(𝑚 + 1)))
14 fveq2 5555 . . . . . 6 (𝑤 = (𝑚 + 1) → (𝑁𝑤) = (𝑁‘(𝑚 + 1)))
1513, 14sseq12d 3211 . . . . 5 (𝑤 = (𝑚 + 1) → (dom (𝐻𝑤) ⊆ (𝑁𝑤) ↔ dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1))))
1615imbi2d 230 . . . 4 (𝑤 = (𝑚 + 1) → ((𝜑 → dom (𝐻𝑤) ⊆ (𝑁𝑤)) ↔ (𝜑 → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))))
17 fveq2 5555 . . . . . . 7 (𝑤 = 𝑃 → (𝐻𝑤) = (𝐻𝑃))
1817dmeqd 4865 . . . . . 6 (𝑤 = 𝑃 → dom (𝐻𝑤) = dom (𝐻𝑃))
19 fveq2 5555 . . . . . 6 (𝑤 = 𝑃 → (𝑁𝑤) = (𝑁𝑃))
2018, 19sseq12d 3211 . . . . 5 (𝑤 = 𝑃 → (dom (𝐻𝑤) ⊆ (𝑁𝑤) ↔ dom (𝐻𝑃) ⊆ (𝑁𝑃)))
2120imbi2d 230 . . . 4 (𝑤 = 𝑃 → ((𝜑 → dom (𝐻𝑤) ⊆ (𝑁𝑤)) ↔ (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃))))
22 ennnfonelemh.dceq . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
23 ennnfonelemh.f . . . . . . . . 9 (𝜑𝐹:ω–onto𝐴)
24 ennnfonelemh.ne . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
25 ennnfonelemh.g . . . . . . . . 9 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
26 ennnfonelemh.n . . . . . . . . 9 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
27 ennnfonelemh.j . . . . . . . . 9 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
28 ennnfonelemh.h . . . . . . . . 9 𝐻 = seq0(𝐺, 𝐽)
2922, 23, 24, 25, 26, 27, 28ennnfonelem0 12565 . . . . . . . 8 (𝜑 → (𝐻‘0) = ∅)
3029dmeqd 4865 . . . . . . 7 (𝜑 → dom (𝐻‘0) = dom ∅)
31 dm0 4877 . . . . . . 7 dom ∅ = ∅
3230, 31eqtrdi 2242 . . . . . 6 (𝜑 → dom (𝐻‘0) = ∅)
33 0ss 3486 . . . . . 6 ∅ ⊆ (𝑁‘0)
3432, 33eqsstrdi 3232 . . . . 5 (𝜑 → dom (𝐻‘0) ⊆ (𝑁‘0))
3534a1i 9 . . . 4 (0 ∈ ℤ → (𝜑 → dom (𝐻‘0) ⊆ (𝑁‘0)))
3626frechashgf1o 10502 . . . . . . . . . . . . . 14 𝑁:ω–1-1-onto→ℕ0
37 f1of 5501 . . . . . . . . . . . . . 14 (𝑁:ω–1-1-onto→ℕ0𝑁:ω⟶ℕ0)
3836, 37mp1i 10 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → 𝑁:ω⟶ℕ0)
3922ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
4023ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝐹:ω–onto𝐴)
4124ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
42 simplr 528 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝑚 ∈ (ℤ‘0))
43 nn0uz 9630 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
4442, 43eleqtrrdi 2287 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝑚 ∈ ℕ0)
45 peano2nn0 9283 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
4644, 45syl 14 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑚 + 1) ∈ ℕ0)
4739, 40, 41, 25, 26, 27, 28, 46ennnfonelemom 12568 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → dom (𝐻‘(𝑚 + 1)) ∈ ω)
4847adantr 276 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ∈ ω)
4938, 48ffvelcdmd 5695 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ∈ ℕ0)
5049nn0red 9297 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ∈ ℝ)
5144nn0red 9297 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝑚 ∈ ℝ)
5251adantr 276 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → 𝑚 ∈ ℝ)
53 peano2re 8157 . . . . . . . . . . . 12 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
5452, 53syl 14 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑚 + 1) ∈ ℝ)
5539, 40, 41, 25, 26, 27, 28, 44ennnfonelemp1 12566 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝐻‘(𝑚 + 1)) = if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})))
5655adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐻‘(𝑚 + 1)) = if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})))
57 simpr 110 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)))
5857iftrued 3565 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})) = (𝐻𝑚))
5956, 58eqtrd 2226 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐻‘(𝑚 + 1)) = (𝐻𝑚))
6059dmeqd 4865 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = dom (𝐻𝑚))
6160fveq2d 5559 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) = (𝑁‘dom (𝐻𝑚)))
62 simpr 110 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → dom (𝐻𝑚) ⊆ (𝑁𝑚))
63 0zd 9332 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 0 ∈ ℤ)
6439, 40, 41, 25, 26, 27, 28, 44ennnfonelemom 12568 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → dom (𝐻𝑚) ∈ ω)
65 f1ocnv 5514 . . . . . . . . . . . . . . . . . . . 20 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
6636, 65ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑁:ℕ01-1-onto→ω
67 f1of 5501 . . . . . . . . . . . . . . . . . . 19 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
6866, 67mp1i 10 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ0𝑁:ℕ0⟶ω)
69 id 19 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ0𝑚 ∈ ℕ0)
7068, 69ffvelcdmd 5695 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0 → (𝑁𝑚) ∈ ω)
7144, 70syl 14 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁𝑚) ∈ ω)
7263, 26, 64, 71frec2uzled 10503 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (dom (𝐻𝑚) ⊆ (𝑁𝑚) ↔ (𝑁‘dom (𝐻𝑚)) ≤ (𝑁‘(𝑁𝑚))))
7362, 72mpbid 147 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘dom (𝐻𝑚)) ≤ (𝑁‘(𝑁𝑚)))
74 f1ocnvfv2 5822 . . . . . . . . . . . . . . 15 ((𝑁:ω–1-1-onto→ℕ0𝑚 ∈ ℕ0) → (𝑁‘(𝑁𝑚)) = 𝑚)
7536, 44, 74sylancr 414 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘(𝑁𝑚)) = 𝑚)
7673, 75breqtrd 4056 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘dom (𝐻𝑚)) ≤ 𝑚)
7776adantr 276 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻𝑚)) ≤ 𝑚)
7861, 77eqbrtrd 4052 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ 𝑚)
7952lep1d 8952 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → 𝑚 ≤ (𝑚 + 1))
8050, 52, 54, 78, 79letrd 8145 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑚 + 1))
81 f1ocnvfv2 5822 . . . . . . . . . . . 12 ((𝑁:ω–1-1-onto→ℕ0 ∧ (𝑚 + 1) ∈ ℕ0) → (𝑁‘(𝑁‘(𝑚 + 1))) = (𝑚 + 1))
8236, 46, 81sylancr 414 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘(𝑁‘(𝑚 + 1))) = (𝑚 + 1))
8382adantr 276 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘(𝑁‘(𝑚 + 1))) = (𝑚 + 1))
8480, 83breqtrrd 4058 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1))))
8566, 67mp1i 10 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝑁:ℕ0⟶ω)
8685, 46ffvelcdmd 5695 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘(𝑚 + 1)) ∈ ω)
8763, 26, 47, 86frec2uzled 10503 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)) ↔ (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1)))))
8887adantr 276 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)) ↔ (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1)))))
8984, 88mpbird 167 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))
9055adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐻‘(𝑚 + 1)) = if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})))
91 simpr 110 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)))
9291iffalsed 3568 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})) = ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}))
9390, 92eqtrd 2226 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐻‘(𝑚 + 1)) = ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}))
9493dmeqd 4865 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = dom ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}))
95 dmun 4870 . . . . . . . . . . . . . . . 16 dom ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}) = (dom (𝐻𝑚) ∪ dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})
9694, 95eqtrdi 2242 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = (dom (𝐻𝑚) ∪ dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}))
97 fof 5477 . . . . . . . . . . . . . . . . . . . 20 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
9840, 97syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝐹:ω⟶𝐴)
9998, 71ffvelcdmd 5695 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝐹‘(𝑁𝑚)) ∈ 𝐴)
10099adantr 276 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐹‘(𝑁𝑚)) ∈ 𝐴)
101 dmsnopg 5138 . . . . . . . . . . . . . . . . 17 ((𝐹‘(𝑁𝑚)) ∈ 𝐴 → dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩} = {dom (𝐻𝑚)})
102100, 101syl 14 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩} = {dom (𝐻𝑚)})
103102uneq2d 3314 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻𝑚) ∪ dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}) = (dom (𝐻𝑚) ∪ {dom (𝐻𝑚)}))
10496, 103eqtrd 2226 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = (dom (𝐻𝑚) ∪ {dom (𝐻𝑚)}))
105 df-suc 4403 . . . . . . . . . . . . . 14 suc dom (𝐻𝑚) = (dom (𝐻𝑚) ∪ {dom (𝐻𝑚)})
106104, 105eqtr4di 2244 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = suc dom (𝐻𝑚))
107 simplr 528 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻𝑚) ⊆ (𝑁𝑚))
10871adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁𝑚) ∈ ω)
109 nnsucsssuc 6547 . . . . . . . . . . . . . . 15 ((dom (𝐻𝑚) ∈ ω ∧ (𝑁𝑚) ∈ ω) → (dom (𝐻𝑚) ⊆ (𝑁𝑚) ↔ suc dom (𝐻𝑚) ⊆ suc (𝑁𝑚)))
11064, 108, 109syl2an2r 595 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻𝑚) ⊆ (𝑁𝑚) ↔ suc dom (𝐻𝑚) ⊆ suc (𝑁𝑚)))
111107, 110mpbid 147 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → suc dom (𝐻𝑚) ⊆ suc (𝑁𝑚))
112106, 111eqsstrd 3216 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ⊆ suc (𝑁𝑚))
113 0zd 9332 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → 0 ∈ ℤ)
11447adantr 276 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ∈ ω)
115 peano2 4628 . . . . . . . . . . . . . 14 ((𝑁𝑚) ∈ ω → suc (𝑁𝑚) ∈ ω)
116108, 115syl 14 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → suc (𝑁𝑚) ∈ ω)
117113, 26, 114, 116frec2uzled 10503 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻‘(𝑚 + 1)) ⊆ suc (𝑁𝑚) ↔ (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘suc (𝑁𝑚))))
118112, 117mpbid 147 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘suc (𝑁𝑚)))
119113, 26, 108frec2uzsucd 10475 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘suc (𝑁𝑚)) = ((𝑁‘(𝑁𝑚)) + 1))
12075adantr 276 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘(𝑁𝑚)) = 𝑚)
121120oveq1d 5934 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → ((𝑁‘(𝑁𝑚)) + 1) = (𝑚 + 1))
122119, 121eqtrd 2226 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘suc (𝑁𝑚)) = (𝑚 + 1))
123118, 122breqtrd 4056 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑚 + 1))
12482adantr 276 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘(𝑁‘(𝑚 + 1))) = (𝑚 + 1))
125123, 124breqtrrd 4058 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1))))
12686adantr 276 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘(𝑚 + 1)) ∈ ω)
127113, 26, 114, 126frec2uzled 10503 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)) ↔ (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1)))))
128125, 127mpbird 167 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))
12939, 40, 71ennnfonelemdc 12559 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → DECID (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)))
130 exmiddc 837 . . . . . . . . 9 (DECID (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)) → ((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)) ∨ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))))
131129, 130syl 14 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → ((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)) ∨ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))))
13289, 128, 131mpjaodan 799 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))
133132ex 115 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘0)) → (dom (𝐻𝑚) ⊆ (𝑁𝑚) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1))))
134133expcom 116 . . . . 5 (𝑚 ∈ (ℤ‘0) → (𝜑 → (dom (𝐻𝑚) ⊆ (𝑁𝑚) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))))
135134a2d 26 . . . 4 (𝑚 ∈ (ℤ‘0) → ((𝜑 → dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝜑 → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))))
1366, 11, 16, 21, 35, 135uzind4 9656 . . 3 (𝑃 ∈ (ℤ‘0) → (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃)))
137136, 43eleq2s 2288 . 2 (𝑃 ∈ ℕ0 → (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃)))
1381, 137mpcom 36 1 (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364  wral 2472  wrex 2473  cun 3152  wss 3154  c0 3447  ifcif 3558  {csn 3619  cop 3622   class class class wbr 4030  cmpt 4091  suc csuc 4397  ωcom 4623  ccnv 4659  dom cdm 4660  cima 4663  wf 5251  ontowfo 5253  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  cmpo 5921  freccfrec 6445  pm cpm 6705  cr 7873  0cc0 7874  1c1 7875   + caddc 7877  cle 8057  cmin 8192  0cn0 9243  cz 9320  cuz 9595  seqcseq 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pm 6707  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator