ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemkh GIF version

Theorem ennnfonelemkh 12898
Description: Lemma for ennnfone 12911. Because we add zero or one entries for each new index, the length of each sequence is no greater than its index. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemkh.p (𝜑𝑃 ∈ ℕ0)
Assertion
Ref Expression
ennnfonelemkh (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑗,𝐻,𝑥,𝑦   𝑗,𝐽   𝑗,𝑁,𝑥,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝑃(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑘,𝑛)

Proof of Theorem ennnfonelemkh
Dummy variables 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemkh.p . 2 (𝜑𝑃 ∈ ℕ0)
2 fveq2 5599 . . . . . . 7 (𝑤 = 0 → (𝐻𝑤) = (𝐻‘0))
32dmeqd 4899 . . . . . 6 (𝑤 = 0 → dom (𝐻𝑤) = dom (𝐻‘0))
4 fveq2 5599 . . . . . 6 (𝑤 = 0 → (𝑁𝑤) = (𝑁‘0))
53, 4sseq12d 3232 . . . . 5 (𝑤 = 0 → (dom (𝐻𝑤) ⊆ (𝑁𝑤) ↔ dom (𝐻‘0) ⊆ (𝑁‘0)))
65imbi2d 230 . . . 4 (𝑤 = 0 → ((𝜑 → dom (𝐻𝑤) ⊆ (𝑁𝑤)) ↔ (𝜑 → dom (𝐻‘0) ⊆ (𝑁‘0))))
7 fveq2 5599 . . . . . . 7 (𝑤 = 𝑚 → (𝐻𝑤) = (𝐻𝑚))
87dmeqd 4899 . . . . . 6 (𝑤 = 𝑚 → dom (𝐻𝑤) = dom (𝐻𝑚))
9 fveq2 5599 . . . . . 6 (𝑤 = 𝑚 → (𝑁𝑤) = (𝑁𝑚))
108, 9sseq12d 3232 . . . . 5 (𝑤 = 𝑚 → (dom (𝐻𝑤) ⊆ (𝑁𝑤) ↔ dom (𝐻𝑚) ⊆ (𝑁𝑚)))
1110imbi2d 230 . . . 4 (𝑤 = 𝑚 → ((𝜑 → dom (𝐻𝑤) ⊆ (𝑁𝑤)) ↔ (𝜑 → dom (𝐻𝑚) ⊆ (𝑁𝑚))))
12 fveq2 5599 . . . . . . 7 (𝑤 = (𝑚 + 1) → (𝐻𝑤) = (𝐻‘(𝑚 + 1)))
1312dmeqd 4899 . . . . . 6 (𝑤 = (𝑚 + 1) → dom (𝐻𝑤) = dom (𝐻‘(𝑚 + 1)))
14 fveq2 5599 . . . . . 6 (𝑤 = (𝑚 + 1) → (𝑁𝑤) = (𝑁‘(𝑚 + 1)))
1513, 14sseq12d 3232 . . . . 5 (𝑤 = (𝑚 + 1) → (dom (𝐻𝑤) ⊆ (𝑁𝑤) ↔ dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1))))
1615imbi2d 230 . . . 4 (𝑤 = (𝑚 + 1) → ((𝜑 → dom (𝐻𝑤) ⊆ (𝑁𝑤)) ↔ (𝜑 → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))))
17 fveq2 5599 . . . . . . 7 (𝑤 = 𝑃 → (𝐻𝑤) = (𝐻𝑃))
1817dmeqd 4899 . . . . . 6 (𝑤 = 𝑃 → dom (𝐻𝑤) = dom (𝐻𝑃))
19 fveq2 5599 . . . . . 6 (𝑤 = 𝑃 → (𝑁𝑤) = (𝑁𝑃))
2018, 19sseq12d 3232 . . . . 5 (𝑤 = 𝑃 → (dom (𝐻𝑤) ⊆ (𝑁𝑤) ↔ dom (𝐻𝑃) ⊆ (𝑁𝑃)))
2120imbi2d 230 . . . 4 (𝑤 = 𝑃 → ((𝜑 → dom (𝐻𝑤) ⊆ (𝑁𝑤)) ↔ (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃))))
22 ennnfonelemh.dceq . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
23 ennnfonelemh.f . . . . . . . . 9 (𝜑𝐹:ω–onto𝐴)
24 ennnfonelemh.ne . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
25 ennnfonelemh.g . . . . . . . . 9 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
26 ennnfonelemh.n . . . . . . . . 9 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
27 ennnfonelemh.j . . . . . . . . 9 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
28 ennnfonelemh.h . . . . . . . . 9 𝐻 = seq0(𝐺, 𝐽)
2922, 23, 24, 25, 26, 27, 28ennnfonelem0 12891 . . . . . . . 8 (𝜑 → (𝐻‘0) = ∅)
3029dmeqd 4899 . . . . . . 7 (𝜑 → dom (𝐻‘0) = dom ∅)
31 dm0 4911 . . . . . . 7 dom ∅ = ∅
3230, 31eqtrdi 2256 . . . . . 6 (𝜑 → dom (𝐻‘0) = ∅)
33 0ss 3507 . . . . . 6 ∅ ⊆ (𝑁‘0)
3432, 33eqsstrdi 3253 . . . . 5 (𝜑 → dom (𝐻‘0) ⊆ (𝑁‘0))
3534a1i 9 . . . 4 (0 ∈ ℤ → (𝜑 → dom (𝐻‘0) ⊆ (𝑁‘0)))
3626frechashgf1o 10610 . . . . . . . . . . . . . 14 𝑁:ω–1-1-onto→ℕ0
37 f1of 5544 . . . . . . . . . . . . . 14 (𝑁:ω–1-1-onto→ℕ0𝑁:ω⟶ℕ0)
3836, 37mp1i 10 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → 𝑁:ω⟶ℕ0)
3922ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
4023ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝐹:ω–onto𝐴)
4124ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
42 simplr 528 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝑚 ∈ (ℤ‘0))
43 nn0uz 9718 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
4442, 43eleqtrrdi 2301 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝑚 ∈ ℕ0)
45 peano2nn0 9370 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
4644, 45syl 14 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑚 + 1) ∈ ℕ0)
4739, 40, 41, 25, 26, 27, 28, 46ennnfonelemom 12894 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → dom (𝐻‘(𝑚 + 1)) ∈ ω)
4847adantr 276 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ∈ ω)
4938, 48ffvelcdmd 5739 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ∈ ℕ0)
5049nn0red 9384 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ∈ ℝ)
5144nn0red 9384 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝑚 ∈ ℝ)
5251adantr 276 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → 𝑚 ∈ ℝ)
53 peano2re 8243 . . . . . . . . . . . 12 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
5452, 53syl 14 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑚 + 1) ∈ ℝ)
5539, 40, 41, 25, 26, 27, 28, 44ennnfonelemp1 12892 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝐻‘(𝑚 + 1)) = if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})))
5655adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐻‘(𝑚 + 1)) = if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})))
57 simpr 110 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)))
5857iftrued 3586 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})) = (𝐻𝑚))
5956, 58eqtrd 2240 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐻‘(𝑚 + 1)) = (𝐻𝑚))
6059dmeqd 4899 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = dom (𝐻𝑚))
6160fveq2d 5603 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) = (𝑁‘dom (𝐻𝑚)))
62 simpr 110 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → dom (𝐻𝑚) ⊆ (𝑁𝑚))
63 0zd 9419 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 0 ∈ ℤ)
6439, 40, 41, 25, 26, 27, 28, 44ennnfonelemom 12894 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → dom (𝐻𝑚) ∈ ω)
65 f1ocnv 5557 . . . . . . . . . . . . . . . . . . . 20 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
6636, 65ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑁:ℕ01-1-onto→ω
67 f1of 5544 . . . . . . . . . . . . . . . . . . 19 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
6866, 67mp1i 10 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ0𝑁:ℕ0⟶ω)
69 id 19 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ0𝑚 ∈ ℕ0)
7068, 69ffvelcdmd 5739 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0 → (𝑁𝑚) ∈ ω)
7144, 70syl 14 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁𝑚) ∈ ω)
7263, 26, 64, 71frec2uzled 10611 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (dom (𝐻𝑚) ⊆ (𝑁𝑚) ↔ (𝑁‘dom (𝐻𝑚)) ≤ (𝑁‘(𝑁𝑚))))
7362, 72mpbid 147 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘dom (𝐻𝑚)) ≤ (𝑁‘(𝑁𝑚)))
74 f1ocnvfv2 5870 . . . . . . . . . . . . . . 15 ((𝑁:ω–1-1-onto→ℕ0𝑚 ∈ ℕ0) → (𝑁‘(𝑁𝑚)) = 𝑚)
7536, 44, 74sylancr 414 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘(𝑁𝑚)) = 𝑚)
7673, 75breqtrd 4085 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘dom (𝐻𝑚)) ≤ 𝑚)
7776adantr 276 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻𝑚)) ≤ 𝑚)
7861, 77eqbrtrd 4081 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ 𝑚)
7952lep1d 9039 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → 𝑚 ≤ (𝑚 + 1))
8050, 52, 54, 78, 79letrd 8231 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑚 + 1))
81 f1ocnvfv2 5870 . . . . . . . . . . . 12 ((𝑁:ω–1-1-onto→ℕ0 ∧ (𝑚 + 1) ∈ ℕ0) → (𝑁‘(𝑁‘(𝑚 + 1))) = (𝑚 + 1))
8236, 46, 81sylancr 414 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘(𝑁‘(𝑚 + 1))) = (𝑚 + 1))
8382adantr 276 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘(𝑁‘(𝑚 + 1))) = (𝑚 + 1))
8480, 83breqtrrd 4087 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1))))
8566, 67mp1i 10 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝑁:ℕ0⟶ω)
8685, 46ffvelcdmd 5739 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘(𝑚 + 1)) ∈ ω)
8763, 26, 47, 86frec2uzled 10611 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)) ↔ (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1)))))
8887adantr 276 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)) ↔ (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1)))))
8984, 88mpbird 167 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))
9055adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐻‘(𝑚 + 1)) = if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})))
91 simpr 110 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)))
9291iffalsed 3589 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})) = ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}))
9390, 92eqtrd 2240 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐻‘(𝑚 + 1)) = ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}))
9493dmeqd 4899 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = dom ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}))
95 dmun 4904 . . . . . . . . . . . . . . . 16 dom ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}) = (dom (𝐻𝑚) ∪ dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})
9694, 95eqtrdi 2256 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = (dom (𝐻𝑚) ∪ dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}))
97 fof 5520 . . . . . . . . . . . . . . . . . . . 20 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
9840, 97syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝐹:ω⟶𝐴)
9998, 71ffvelcdmd 5739 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝐹‘(𝑁𝑚)) ∈ 𝐴)
10099adantr 276 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐹‘(𝑁𝑚)) ∈ 𝐴)
101 dmsnopg 5173 . . . . . . . . . . . . . . . . 17 ((𝐹‘(𝑁𝑚)) ∈ 𝐴 → dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩} = {dom (𝐻𝑚)})
102100, 101syl 14 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩} = {dom (𝐻𝑚)})
103102uneq2d 3335 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻𝑚) ∪ dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}) = (dom (𝐻𝑚) ∪ {dom (𝐻𝑚)}))
10496, 103eqtrd 2240 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = (dom (𝐻𝑚) ∪ {dom (𝐻𝑚)}))
105 df-suc 4436 . . . . . . . . . . . . . 14 suc dom (𝐻𝑚) = (dom (𝐻𝑚) ∪ {dom (𝐻𝑚)})
106104, 105eqtr4di 2258 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = suc dom (𝐻𝑚))
107 simplr 528 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻𝑚) ⊆ (𝑁𝑚))
10871adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁𝑚) ∈ ω)
109 nnsucsssuc 6601 . . . . . . . . . . . . . . 15 ((dom (𝐻𝑚) ∈ ω ∧ (𝑁𝑚) ∈ ω) → (dom (𝐻𝑚) ⊆ (𝑁𝑚) ↔ suc dom (𝐻𝑚) ⊆ suc (𝑁𝑚)))
11064, 108, 109syl2an2r 595 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻𝑚) ⊆ (𝑁𝑚) ↔ suc dom (𝐻𝑚) ⊆ suc (𝑁𝑚)))
111107, 110mpbid 147 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → suc dom (𝐻𝑚) ⊆ suc (𝑁𝑚))
112106, 111eqsstrd 3237 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ⊆ suc (𝑁𝑚))
113 0zd 9419 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → 0 ∈ ℤ)
11447adantr 276 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ∈ ω)
115 peano2 4661 . . . . . . . . . . . . . 14 ((𝑁𝑚) ∈ ω → suc (𝑁𝑚) ∈ ω)
116108, 115syl 14 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → suc (𝑁𝑚) ∈ ω)
117113, 26, 114, 116frec2uzled 10611 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻‘(𝑚 + 1)) ⊆ suc (𝑁𝑚) ↔ (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘suc (𝑁𝑚))))
118112, 117mpbid 147 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘suc (𝑁𝑚)))
119113, 26, 108frec2uzsucd 10583 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘suc (𝑁𝑚)) = ((𝑁‘(𝑁𝑚)) + 1))
12075adantr 276 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘(𝑁𝑚)) = 𝑚)
121120oveq1d 5982 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → ((𝑁‘(𝑁𝑚)) + 1) = (𝑚 + 1))
122119, 121eqtrd 2240 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘suc (𝑁𝑚)) = (𝑚 + 1))
123118, 122breqtrd 4085 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑚 + 1))
12482adantr 276 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘(𝑁‘(𝑚 + 1))) = (𝑚 + 1))
125123, 124breqtrrd 4087 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1))))
12686adantr 276 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘(𝑚 + 1)) ∈ ω)
127113, 26, 114, 126frec2uzled 10611 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)) ↔ (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1)))))
128125, 127mpbird 167 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))
12939, 40, 71ennnfonelemdc 12885 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → DECID (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)))
130 exmiddc 838 . . . . . . . . 9 (DECID (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)) → ((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)) ∨ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))))
131129, 130syl 14 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → ((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)) ∨ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))))
13289, 128, 131mpjaodan 800 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))
133132ex 115 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘0)) → (dom (𝐻𝑚) ⊆ (𝑁𝑚) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1))))
134133expcom 116 . . . . 5 (𝑚 ∈ (ℤ‘0) → (𝜑 → (dom (𝐻𝑚) ⊆ (𝑁𝑚) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))))
135134a2d 26 . . . 4 (𝑚 ∈ (ℤ‘0) → ((𝜑 → dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝜑 → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))))
1366, 11, 16, 21, 35, 135uzind4 9744 . . 3 (𝑃 ∈ (ℤ‘0) → (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃)))
137136, 43eleq2s 2302 . 2 (𝑃 ∈ ℕ0 → (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃)))
1381, 137mpcom 36 1 (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2178  wne 2378  wral 2486  wrex 2487  cun 3172  wss 3174  c0 3468  ifcif 3579  {csn 3643  cop 3646   class class class wbr 4059  cmpt 4121  suc csuc 4430  ωcom 4656  ccnv 4692  dom cdm 4693  cima 4696  wf 5286  ontowfo 5288  1-1-ontowf1o 5289  cfv 5290  (class class class)co 5967  cmpo 5969  freccfrec 6499  pm cpm 6759  cr 7959  0cc0 7960  1c1 7961   + caddc 7963  cle 8143  cmin 8278  0cn0 9330  cz 9407  cuz 9683  seqcseq 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pm 6761  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator