ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemkh GIF version

Theorem ennnfonelemkh 12569
Description: Lemma for ennnfone 12582. Because we add zero or one entries for each new index, the length of each sequence is no greater than its index. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemkh.p (𝜑𝑃 ∈ ℕ0)
Assertion
Ref Expression
ennnfonelemkh (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑗,𝐻,𝑥,𝑦   𝑗,𝐽   𝑗,𝑁,𝑥,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝑃(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑘,𝑛)

Proof of Theorem ennnfonelemkh
Dummy variables 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemkh.p . 2 (𝜑𝑃 ∈ ℕ0)
2 fveq2 5554 . . . . . . 7 (𝑤 = 0 → (𝐻𝑤) = (𝐻‘0))
32dmeqd 4864 . . . . . 6 (𝑤 = 0 → dom (𝐻𝑤) = dom (𝐻‘0))
4 fveq2 5554 . . . . . 6 (𝑤 = 0 → (𝑁𝑤) = (𝑁‘0))
53, 4sseq12d 3210 . . . . 5 (𝑤 = 0 → (dom (𝐻𝑤) ⊆ (𝑁𝑤) ↔ dom (𝐻‘0) ⊆ (𝑁‘0)))
65imbi2d 230 . . . 4 (𝑤 = 0 → ((𝜑 → dom (𝐻𝑤) ⊆ (𝑁𝑤)) ↔ (𝜑 → dom (𝐻‘0) ⊆ (𝑁‘0))))
7 fveq2 5554 . . . . . . 7 (𝑤 = 𝑚 → (𝐻𝑤) = (𝐻𝑚))
87dmeqd 4864 . . . . . 6 (𝑤 = 𝑚 → dom (𝐻𝑤) = dom (𝐻𝑚))
9 fveq2 5554 . . . . . 6 (𝑤 = 𝑚 → (𝑁𝑤) = (𝑁𝑚))
108, 9sseq12d 3210 . . . . 5 (𝑤 = 𝑚 → (dom (𝐻𝑤) ⊆ (𝑁𝑤) ↔ dom (𝐻𝑚) ⊆ (𝑁𝑚)))
1110imbi2d 230 . . . 4 (𝑤 = 𝑚 → ((𝜑 → dom (𝐻𝑤) ⊆ (𝑁𝑤)) ↔ (𝜑 → dom (𝐻𝑚) ⊆ (𝑁𝑚))))
12 fveq2 5554 . . . . . . 7 (𝑤 = (𝑚 + 1) → (𝐻𝑤) = (𝐻‘(𝑚 + 1)))
1312dmeqd 4864 . . . . . 6 (𝑤 = (𝑚 + 1) → dom (𝐻𝑤) = dom (𝐻‘(𝑚 + 1)))
14 fveq2 5554 . . . . . 6 (𝑤 = (𝑚 + 1) → (𝑁𝑤) = (𝑁‘(𝑚 + 1)))
1513, 14sseq12d 3210 . . . . 5 (𝑤 = (𝑚 + 1) → (dom (𝐻𝑤) ⊆ (𝑁𝑤) ↔ dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1))))
1615imbi2d 230 . . . 4 (𝑤 = (𝑚 + 1) → ((𝜑 → dom (𝐻𝑤) ⊆ (𝑁𝑤)) ↔ (𝜑 → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))))
17 fveq2 5554 . . . . . . 7 (𝑤 = 𝑃 → (𝐻𝑤) = (𝐻𝑃))
1817dmeqd 4864 . . . . . 6 (𝑤 = 𝑃 → dom (𝐻𝑤) = dom (𝐻𝑃))
19 fveq2 5554 . . . . . 6 (𝑤 = 𝑃 → (𝑁𝑤) = (𝑁𝑃))
2018, 19sseq12d 3210 . . . . 5 (𝑤 = 𝑃 → (dom (𝐻𝑤) ⊆ (𝑁𝑤) ↔ dom (𝐻𝑃) ⊆ (𝑁𝑃)))
2120imbi2d 230 . . . 4 (𝑤 = 𝑃 → ((𝜑 → dom (𝐻𝑤) ⊆ (𝑁𝑤)) ↔ (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃))))
22 ennnfonelemh.dceq . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
23 ennnfonelemh.f . . . . . . . . 9 (𝜑𝐹:ω–onto𝐴)
24 ennnfonelemh.ne . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
25 ennnfonelemh.g . . . . . . . . 9 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
26 ennnfonelemh.n . . . . . . . . 9 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
27 ennnfonelemh.j . . . . . . . . 9 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
28 ennnfonelemh.h . . . . . . . . 9 𝐻 = seq0(𝐺, 𝐽)
2922, 23, 24, 25, 26, 27, 28ennnfonelem0 12562 . . . . . . . 8 (𝜑 → (𝐻‘0) = ∅)
3029dmeqd 4864 . . . . . . 7 (𝜑 → dom (𝐻‘0) = dom ∅)
31 dm0 4876 . . . . . . 7 dom ∅ = ∅
3230, 31eqtrdi 2242 . . . . . 6 (𝜑 → dom (𝐻‘0) = ∅)
33 0ss 3485 . . . . . 6 ∅ ⊆ (𝑁‘0)
3432, 33eqsstrdi 3231 . . . . 5 (𝜑 → dom (𝐻‘0) ⊆ (𝑁‘0))
3534a1i 9 . . . 4 (0 ∈ ℤ → (𝜑 → dom (𝐻‘0) ⊆ (𝑁‘0)))
3626frechashgf1o 10499 . . . . . . . . . . . . . 14 𝑁:ω–1-1-onto→ℕ0
37 f1of 5500 . . . . . . . . . . . . . 14 (𝑁:ω–1-1-onto→ℕ0𝑁:ω⟶ℕ0)
3836, 37mp1i 10 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → 𝑁:ω⟶ℕ0)
3922ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
4023ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝐹:ω–onto𝐴)
4124ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
42 simplr 528 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝑚 ∈ (ℤ‘0))
43 nn0uz 9627 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
4442, 43eleqtrrdi 2287 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝑚 ∈ ℕ0)
45 peano2nn0 9280 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
4644, 45syl 14 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑚 + 1) ∈ ℕ0)
4739, 40, 41, 25, 26, 27, 28, 46ennnfonelemom 12565 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → dom (𝐻‘(𝑚 + 1)) ∈ ω)
4847adantr 276 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ∈ ω)
4938, 48ffvelcdmd 5694 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ∈ ℕ0)
5049nn0red 9294 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ∈ ℝ)
5144nn0red 9294 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝑚 ∈ ℝ)
5251adantr 276 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → 𝑚 ∈ ℝ)
53 peano2re 8155 . . . . . . . . . . . 12 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
5452, 53syl 14 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑚 + 1) ∈ ℝ)
5539, 40, 41, 25, 26, 27, 28, 44ennnfonelemp1 12563 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝐻‘(𝑚 + 1)) = if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})))
5655adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐻‘(𝑚 + 1)) = if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})))
57 simpr 110 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)))
5857iftrued 3564 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})) = (𝐻𝑚))
5956, 58eqtrd 2226 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐻‘(𝑚 + 1)) = (𝐻𝑚))
6059dmeqd 4864 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = dom (𝐻𝑚))
6160fveq2d 5558 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) = (𝑁‘dom (𝐻𝑚)))
62 simpr 110 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → dom (𝐻𝑚) ⊆ (𝑁𝑚))
63 0zd 9329 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 0 ∈ ℤ)
6439, 40, 41, 25, 26, 27, 28, 44ennnfonelemom 12565 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → dom (𝐻𝑚) ∈ ω)
65 f1ocnv 5513 . . . . . . . . . . . . . . . . . . . 20 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
6636, 65ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑁:ℕ01-1-onto→ω
67 f1of 5500 . . . . . . . . . . . . . . . . . . 19 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
6866, 67mp1i 10 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ0𝑁:ℕ0⟶ω)
69 id 19 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ0𝑚 ∈ ℕ0)
7068, 69ffvelcdmd 5694 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0 → (𝑁𝑚) ∈ ω)
7144, 70syl 14 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁𝑚) ∈ ω)
7263, 26, 64, 71frec2uzled 10500 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (dom (𝐻𝑚) ⊆ (𝑁𝑚) ↔ (𝑁‘dom (𝐻𝑚)) ≤ (𝑁‘(𝑁𝑚))))
7362, 72mpbid 147 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘dom (𝐻𝑚)) ≤ (𝑁‘(𝑁𝑚)))
74 f1ocnvfv2 5821 . . . . . . . . . . . . . . 15 ((𝑁:ω–1-1-onto→ℕ0𝑚 ∈ ℕ0) → (𝑁‘(𝑁𝑚)) = 𝑚)
7536, 44, 74sylancr 414 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘(𝑁𝑚)) = 𝑚)
7673, 75breqtrd 4055 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘dom (𝐻𝑚)) ≤ 𝑚)
7776adantr 276 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻𝑚)) ≤ 𝑚)
7861, 77eqbrtrd 4051 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ 𝑚)
7952lep1d 8950 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → 𝑚 ≤ (𝑚 + 1))
8050, 52, 54, 78, 79letrd 8143 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑚 + 1))
81 f1ocnvfv2 5821 . . . . . . . . . . . 12 ((𝑁:ω–1-1-onto→ℕ0 ∧ (𝑚 + 1) ∈ ℕ0) → (𝑁‘(𝑁‘(𝑚 + 1))) = (𝑚 + 1))
8236, 46, 81sylancr 414 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘(𝑁‘(𝑚 + 1))) = (𝑚 + 1))
8382adantr 276 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘(𝑁‘(𝑚 + 1))) = (𝑚 + 1))
8480, 83breqtrrd 4057 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1))))
8566, 67mp1i 10 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝑁:ℕ0⟶ω)
8685, 46ffvelcdmd 5694 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝑁‘(𝑚 + 1)) ∈ ω)
8763, 26, 47, 86frec2uzled 10500 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)) ↔ (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1)))))
8887adantr 276 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)) ↔ (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1)))))
8984, 88mpbird 167 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))
9055adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐻‘(𝑚 + 1)) = if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})))
91 simpr 110 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)))
9291iffalsed 3567 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → if((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)), (𝐻𝑚), ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})) = ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}))
9390, 92eqtrd 2226 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐻‘(𝑚 + 1)) = ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}))
9493dmeqd 4864 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = dom ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}))
95 dmun 4869 . . . . . . . . . . . . . . . 16 dom ((𝐻𝑚) ∪ {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}) = (dom (𝐻𝑚) ∪ dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩})
9694, 95eqtrdi 2242 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = (dom (𝐻𝑚) ∪ dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}))
97 fof 5476 . . . . . . . . . . . . . . . . . . . 20 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
9840, 97syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → 𝐹:ω⟶𝐴)
9998, 71ffvelcdmd 5694 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝐹‘(𝑁𝑚)) ∈ 𝐴)
10099adantr 276 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝐹‘(𝑁𝑚)) ∈ 𝐴)
101 dmsnopg 5137 . . . . . . . . . . . . . . . . 17 ((𝐹‘(𝑁𝑚)) ∈ 𝐴 → dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩} = {dom (𝐻𝑚)})
102100, 101syl 14 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩} = {dom (𝐻𝑚)})
103102uneq2d 3313 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻𝑚) ∪ dom {⟨dom (𝐻𝑚), (𝐹‘(𝑁𝑚))⟩}) = (dom (𝐻𝑚) ∪ {dom (𝐻𝑚)}))
10496, 103eqtrd 2226 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = (dom (𝐻𝑚) ∪ {dom (𝐻𝑚)}))
105 df-suc 4402 . . . . . . . . . . . . . 14 suc dom (𝐻𝑚) = (dom (𝐻𝑚) ∪ {dom (𝐻𝑚)})
106104, 105eqtr4di 2244 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) = suc dom (𝐻𝑚))
107 simplr 528 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻𝑚) ⊆ (𝑁𝑚))
10871adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁𝑚) ∈ ω)
109 nnsucsssuc 6545 . . . . . . . . . . . . . . 15 ((dom (𝐻𝑚) ∈ ω ∧ (𝑁𝑚) ∈ ω) → (dom (𝐻𝑚) ⊆ (𝑁𝑚) ↔ suc dom (𝐻𝑚) ⊆ suc (𝑁𝑚)))
11064, 108, 109syl2an2r 595 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻𝑚) ⊆ (𝑁𝑚) ↔ suc dom (𝐻𝑚) ⊆ suc (𝑁𝑚)))
111107, 110mpbid 147 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → suc dom (𝐻𝑚) ⊆ suc (𝑁𝑚))
112106, 111eqsstrd 3215 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ⊆ suc (𝑁𝑚))
113 0zd 9329 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → 0 ∈ ℤ)
11447adantr 276 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ∈ ω)
115 peano2 4627 . . . . . . . . . . . . . 14 ((𝑁𝑚) ∈ ω → suc (𝑁𝑚) ∈ ω)
116108, 115syl 14 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → suc (𝑁𝑚) ∈ ω)
117113, 26, 114, 116frec2uzled 10500 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻‘(𝑚 + 1)) ⊆ suc (𝑁𝑚) ↔ (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘suc (𝑁𝑚))))
118112, 117mpbid 147 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘suc (𝑁𝑚)))
119113, 26, 108frec2uzsucd 10472 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘suc (𝑁𝑚)) = ((𝑁‘(𝑁𝑚)) + 1))
12075adantr 276 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘(𝑁𝑚)) = 𝑚)
121120oveq1d 5933 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → ((𝑁‘(𝑁𝑚)) + 1) = (𝑚 + 1))
122119, 121eqtrd 2226 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘suc (𝑁𝑚)) = (𝑚 + 1))
123118, 122breqtrd 4055 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑚 + 1))
12482adantr 276 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘(𝑁‘(𝑚 + 1))) = (𝑚 + 1))
125123, 124breqtrrd 4057 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1))))
12686adantr 276 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (𝑁‘(𝑚 + 1)) ∈ ω)
127113, 26, 114, 126frec2uzled 10500 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → (dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)) ↔ (𝑁‘dom (𝐻‘(𝑚 + 1))) ≤ (𝑁‘(𝑁‘(𝑚 + 1)))))
128125, 127mpbird 167 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) ∧ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))
12939, 40, 71ennnfonelemdc 12556 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → DECID (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)))
130 exmiddc 837 . . . . . . . . 9 (DECID (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)) → ((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)) ∨ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))))
131129, 130syl 14 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → ((𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚)) ∨ ¬ (𝐹‘(𝑁𝑚)) ∈ (𝐹 “ (𝑁𝑚))))
13289, 128, 131mpjaodan 799 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘0)) ∧ dom (𝐻𝑚) ⊆ (𝑁𝑚)) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))
133132ex 115 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘0)) → (dom (𝐻𝑚) ⊆ (𝑁𝑚) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1))))
134133expcom 116 . . . . 5 (𝑚 ∈ (ℤ‘0) → (𝜑 → (dom (𝐻𝑚) ⊆ (𝑁𝑚) → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))))
135134a2d 26 . . . 4 (𝑚 ∈ (ℤ‘0) → ((𝜑 → dom (𝐻𝑚) ⊆ (𝑁𝑚)) → (𝜑 → dom (𝐻‘(𝑚 + 1)) ⊆ (𝑁‘(𝑚 + 1)))))
1366, 11, 16, 21, 35, 135uzind4 9653 . . 3 (𝑃 ∈ (ℤ‘0) → (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃)))
137136, 43eleq2s 2288 . 2 (𝑃 ∈ ℕ0 → (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃)))
1381, 137mpcom 36 1 (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364  wral 2472  wrex 2473  cun 3151  wss 3153  c0 3446  ifcif 3557  {csn 3618  cop 3621   class class class wbr 4029  cmpt 4090  suc csuc 4396  ωcom 4622  ccnv 4658  dom cdm 4659  cima 4662  wf 5250  ontowfo 5252  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  cmpo 5920  freccfrec 6443  pm cpm 6703  cr 7871  0cc0 7872  1c1 7873   + caddc 7875  cle 8055  cmin 8190  0cn0 9240  cz 9317  cuz 9592  seqcseq 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pm 6705  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator