| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ntrss2 | GIF version | ||
| Description: A subset includes its interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ntrss2 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ntrval 14697 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 3 | inss2 3402 | . . . 4 ⊢ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆 | |
| 4 | 3 | unissi 3887 | . . 3 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ ∪ 𝒫 𝑆 |
| 5 | unipw 4279 | . . 3 ⊢ ∪ 𝒫 𝑆 = 𝑆 | |
| 6 | 4, 5 | sseqtri 3235 | . 2 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆 |
| 7 | 2, 6 | eqsstrdi 3253 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 ∩ cin 3173 ⊆ wss 3174 𝒫 cpw 3626 ∪ cuni 3864 ‘cfv 5290 Topctop 14584 intcnt 14680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-top 14585 df-ntr 14683 |
| This theorem is referenced by: ntrin 14711 neiint 14732 topssnei 14749 iscnp4 14805 cnntri 14811 cnntr 14812 cnptoprest 14826 dvbss 15272 dvfgg 15275 dvcnp2cntop 15286 dvaddxxbr 15288 dvmulxxbr 15289 |
| Copyright terms: Public domain | W3C validator |