| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrd | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqsstrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 2 | eqsstrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | sseq1d 3253 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| 4 | 1, 3 | mpbird 167 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: eqsstrrd 3261 eqsstrdi 3276 tfisi 4678 funresdfunsnss 5841 suppssof1 6234 pw2f1odclem 6991 phplem4dom 7019 fival 7133 fiuni 7141 cardonle 7355 exmidfodomrlemim 7375 frecuzrdgtclt 10638 4sqlem19 12927 ennnfonelemkh 12978 ennnfonelemf1 12984 strfvssn 13049 setscom 13067 imasaddfnlemg 13342 imasaddflemg 13344 reldvdsrsrg 14050 znleval 14611 tgrest 14837 resttopon 14839 rest0 14847 lmtopcnp 14918 metequiv2 15164 xmettx 15178 ellimc3apf 15328 dvfvalap 15349 dvcjbr 15376 dvcj 15377 dvfre 15378 uhgredgm 15928 upgredgssen 15931 umgredgssen 15932 edgumgren 15934 usgredgssen 15954 nnsf 16330 |
| Copyright terms: Public domain | W3C validator |