Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsstrd | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqsstrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
eqsstrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
2 | eqsstrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | sseq1d 3171 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
4 | 1, 3 | mpbird 166 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: eqsstrrd 3179 eqsstrdi 3194 tfisi 4564 funresdfunsnss 5688 suppssof1 6067 phplem4dom 6828 fival 6935 fiuni 6943 cardonle 7143 exmidfodomrlemim 7157 frecuzrdgtclt 10356 ennnfonelemkh 12345 ennnfonelemf1 12351 strfvssn 12416 setscom 12434 tgrest 12809 resttopon 12811 rest0 12819 lmtopcnp 12890 metequiv2 13136 xmettx 13150 ellimc3apf 13269 dvfvalap 13290 dvcjbr 13312 dvcj 13313 dvfre 13314 nnsf 13885 |
Copyright terms: Public domain | W3C validator |