| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrd | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqsstrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 2 | eqsstrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | sseq1d 3213 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| 4 | 1, 3 | mpbird 167 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqsstrrd 3221 eqsstrdi 3236 tfisi 4624 funresdfunsnss 5768 suppssof1 6157 pw2f1odclem 6904 phplem4dom 6932 fival 7045 fiuni 7053 cardonle 7267 exmidfodomrlemim 7282 frecuzrdgtclt 10532 4sqlem19 12605 ennnfonelemkh 12656 ennnfonelemf1 12662 strfvssn 12727 setscom 12745 imasaddfnlemg 13018 imasaddflemg 13020 reldvdsrsrg 13726 znleval 14287 tgrest 14513 resttopon 14515 rest0 14523 lmtopcnp 14594 metequiv2 14840 xmettx 14854 ellimc3apf 15004 dvfvalap 15025 dvcjbr 15052 dvcj 15053 dvfre 15054 nnsf 15760 |
| Copyright terms: Public domain | W3C validator |