Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsstrd | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqsstrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
eqsstrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
2 | eqsstrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | sseq1d 3176 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
4 | 1, 3 | mpbird 166 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: eqsstrrd 3184 eqsstrdi 3199 tfisi 4571 funresdfunsnss 5699 suppssof1 6078 phplem4dom 6840 fival 6947 fiuni 6955 cardonle 7164 exmidfodomrlemim 7178 frecuzrdgtclt 10377 ennnfonelemkh 12367 ennnfonelemf1 12373 strfvssn 12438 setscom 12456 tgrest 12963 resttopon 12965 rest0 12973 lmtopcnp 13044 metequiv2 13290 xmettx 13304 ellimc3apf 13423 dvfvalap 13444 dvcjbr 13466 dvcj 13467 dvfre 13468 nnsf 14038 |
Copyright terms: Public domain | W3C validator |