| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrd | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqsstrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 2 | eqsstrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | sseq1d 3226 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| 4 | 1, 3 | mpbird 167 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: eqsstrrd 3234 eqsstrdi 3249 tfisi 4643 funresdfunsnss 5800 suppssof1 6189 pw2f1odclem 6946 phplem4dom 6974 fival 7087 fiuni 7095 cardonle 7309 exmidfodomrlemim 7325 frecuzrdgtclt 10588 4sqlem19 12807 ennnfonelemkh 12858 ennnfonelemf1 12864 strfvssn 12929 setscom 12947 imasaddfnlemg 13221 imasaddflemg 13223 reldvdsrsrg 13929 znleval 14490 tgrest 14716 resttopon 14718 rest0 14726 lmtopcnp 14797 metequiv2 15043 xmettx 15057 ellimc3apf 15207 dvfvalap 15228 dvcjbr 15255 dvcj 15256 dvfre 15257 nnsf 16083 |
| Copyright terms: Public domain | W3C validator |