ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrd GIF version

Theorem eqsstrd 3233
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
eqsstrd.1 (𝜑𝐴 = 𝐵)
eqsstrd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
eqsstrd (𝜑𝐴𝐶)

Proof of Theorem eqsstrd
StepHypRef Expression
1 eqsstrd.2 . 2 (𝜑𝐵𝐶)
2 eqsstrd.1 . . 3 (𝜑𝐴 = 𝐵)
32sseq1d 3226 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
41, 3mpbird 167 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183
This theorem is referenced by:  eqsstrrd  3234  eqsstrdi  3249  tfisi  4643  funresdfunsnss  5800  suppssof1  6189  pw2f1odclem  6946  phplem4dom  6974  fival  7087  fiuni  7095  cardonle  7309  exmidfodomrlemim  7325  frecuzrdgtclt  10588  4sqlem19  12807  ennnfonelemkh  12858  ennnfonelemf1  12864  strfvssn  12929  setscom  12947  imasaddfnlemg  13221  imasaddflemg  13223  reldvdsrsrg  13929  znleval  14490  tgrest  14716  resttopon  14718  rest0  14726  lmtopcnp  14797  metequiv2  15043  xmettx  15057  ellimc3apf  15207  dvfvalap  15228  dvcjbr  15255  dvcj  15256  dvfre  15257  nnsf  16083
  Copyright terms: Public domain W3C validator