ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrd GIF version

Theorem eqsstrd 3220
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
eqsstrd.1 (𝜑𝐴 = 𝐵)
eqsstrd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
eqsstrd (𝜑𝐴𝐶)

Proof of Theorem eqsstrd
StepHypRef Expression
1 eqsstrd.2 . 2 (𝜑𝐵𝐶)
2 eqsstrd.1 . . 3 (𝜑𝐴 = 𝐵)
32sseq1d 3213 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
41, 3mpbird 167 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  eqsstrrd  3221  eqsstrdi  3236  tfisi  4624  funresdfunsnss  5768  suppssof1  6157  pw2f1odclem  6904  phplem4dom  6932  fival  7045  fiuni  7053  cardonle  7265  exmidfodomrlemim  7280  frecuzrdgtclt  10530  4sqlem19  12603  ennnfonelemkh  12654  ennnfonelemf1  12660  strfvssn  12725  setscom  12743  imasaddfnlemg  13016  imasaddflemg  13018  reldvdsrsrg  13724  znleval  14285  tgrest  14489  resttopon  14491  rest0  14499  lmtopcnp  14570  metequiv2  14816  xmettx  14830  ellimc3apf  14980  dvfvalap  15001  dvcjbr  15028  dvcj  15029  dvfre  15030  nnsf  15736
  Copyright terms: Public domain W3C validator