ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  off GIF version

Theorem off 5850
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
off.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
off.2 (𝜑𝐹:𝐴𝑆)
off.3 (𝜑𝐺:𝐵𝑇)
off.4 (𝜑𝐴𝑉)
off.5 (𝜑𝐵𝑊)
off.6 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
off (𝜑 → (𝐹𝑓 𝑅𝐺):𝐶𝑈)
Distinct variable groups:   𝑦,𝐺   𝑥,𝑦,𝜑   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem off
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 off.2 . . . . 5 (𝜑𝐹:𝐴𝑆)
2 off.6 . . . . . . 7 (𝐴𝐵) = 𝐶
3 inss1 3218 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
42, 3eqsstr3i 3055 . . . . . 6 𝐶𝐴
54sseli 3019 . . . . 5 (𝑧𝐶𝑧𝐴)
6 ffvelrn 5416 . . . . 5 ((𝐹:𝐴𝑆𝑧𝐴) → (𝐹𝑧) ∈ 𝑆)
71, 5, 6syl2an 283 . . . 4 ((𝜑𝑧𝐶) → (𝐹𝑧) ∈ 𝑆)
8 off.3 . . . . 5 (𝜑𝐺:𝐵𝑇)
9 inss2 3219 . . . . . . 7 (𝐴𝐵) ⊆ 𝐵
102, 9eqsstr3i 3055 . . . . . 6 𝐶𝐵
1110sseli 3019 . . . . 5 (𝑧𝐶𝑧𝐵)
12 ffvelrn 5416 . . . . 5 ((𝐺:𝐵𝑇𝑧𝐵) → (𝐺𝑧) ∈ 𝑇)
138, 11, 12syl2an 283 . . . 4 ((𝜑𝑧𝐶) → (𝐺𝑧) ∈ 𝑇)
14 off.1 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
1514ralrimivva 2455 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
1615adantr 270 . . . 4 ((𝜑𝑧𝐶) → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
17 oveq1 5641 . . . . . 6 (𝑥 = (𝐹𝑧) → (𝑥𝑅𝑦) = ((𝐹𝑧)𝑅𝑦))
1817eleq1d 2156 . . . . 5 (𝑥 = (𝐹𝑧) → ((𝑥𝑅𝑦) ∈ 𝑈 ↔ ((𝐹𝑧)𝑅𝑦) ∈ 𝑈))
19 oveq2 5642 . . . . . 6 (𝑦 = (𝐺𝑧) → ((𝐹𝑧)𝑅𝑦) = ((𝐹𝑧)𝑅(𝐺𝑧)))
2019eleq1d 2156 . . . . 5 (𝑦 = (𝐺𝑧) → (((𝐹𝑧)𝑅𝑦) ∈ 𝑈 ↔ ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈))
2118, 20rspc2va 2734 . . . 4 ((((𝐹𝑧) ∈ 𝑆 ∧ (𝐺𝑧) ∈ 𝑇) ∧ ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
227, 13, 16, 21syl21anc 1173 . . 3 ((𝜑𝑧𝐶) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
23 eqid 2088 . . 3 (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧)))
2422, 23fmptd 5436 . 2 (𝜑 → (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))):𝐶𝑈)
25 ffn 5147 . . . . 5 (𝐹:𝐴𝑆𝐹 Fn 𝐴)
261, 25syl 14 . . . 4 (𝜑𝐹 Fn 𝐴)
27 ffn 5147 . . . . 5 (𝐺:𝐵𝑇𝐺 Fn 𝐵)
288, 27syl 14 . . . 4 (𝜑𝐺 Fn 𝐵)
29 off.4 . . . 4 (𝜑𝐴𝑉)
30 off.5 . . . 4 (𝜑𝐵𝑊)
31 eqidd 2089 . . . 4 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
32 eqidd 2089 . . . 4 ((𝜑𝑧𝐵) → (𝐺𝑧) = (𝐺𝑧))
3326, 28, 29, 30, 2, 31, 32offval 5845 . . 3 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
3433feq1d 5135 . 2 (𝜑 → ((𝐹𝑓 𝑅𝐺):𝐶𝑈 ↔ (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))):𝐶𝑈))
3524, 34mpbird 165 1 (𝜑 → (𝐹𝑓 𝑅𝐺):𝐶𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  wral 2359  cin 2996  cmpt 3891   Fn wfn 4997  wf 4998  cfv 5002  (class class class)co 5634  𝑓 cof 5836
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-setind 4343
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-of 5838
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator