![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > off | GIF version |
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
off.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
off.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
off.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
off.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
off.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
off.6 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
Ref | Expression |
---|---|
off | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | off.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
2 | off.6 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
3 | inss1 3379 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
4 | 2, 3 | eqsstrri 3212 | . . . . . 6 ⊢ 𝐶 ⊆ 𝐴 |
5 | 4 | sseli 3175 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐴) |
6 | ffvelcdm 5691 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝑆 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝑆) | |
7 | 1, 5, 6 | syl2an 289 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) ∈ 𝑆) |
8 | off.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
9 | inss2 3380 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
10 | 2, 9 | eqsstrri 3212 | . . . . . 6 ⊢ 𝐶 ⊆ 𝐵 |
11 | 10 | sseli 3175 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵) |
12 | ffvelcdm 5691 | . . . . 5 ⊢ ((𝐺:𝐵⟶𝑇 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) ∈ 𝑇) | |
13 | 8, 11, 12 | syl2an 289 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐺‘𝑧) ∈ 𝑇) |
14 | off.1 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
15 | 14 | ralrimivva 2576 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
16 | 15 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
17 | oveq1 5925 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑧) → (𝑥𝑅𝑦) = ((𝐹‘𝑧)𝑅𝑦)) | |
18 | 17 | eleq1d 2262 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑧) → ((𝑥𝑅𝑦) ∈ 𝑈 ↔ ((𝐹‘𝑧)𝑅𝑦) ∈ 𝑈)) |
19 | oveq2 5926 | . . . . . 6 ⊢ (𝑦 = (𝐺‘𝑧) → ((𝐹‘𝑧)𝑅𝑦) = ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) | |
20 | 19 | eleq1d 2262 | . . . . 5 ⊢ (𝑦 = (𝐺‘𝑧) → (((𝐹‘𝑧)𝑅𝑦) ∈ 𝑈 ↔ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈)) |
21 | 18, 20 | rspc2va 2878 | . . . 4 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ (𝐺‘𝑧) ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
22 | 7, 13, 16, 21 | syl21anc 1248 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
23 | eqid 2193 | . . 3 ⊢ (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) | |
24 | 22, 23 | fmptd 5712 | . 2 ⊢ (𝜑 → (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))):𝐶⟶𝑈) |
25 | ffn 5403 | . . . . 5 ⊢ (𝐹:𝐴⟶𝑆 → 𝐹 Fn 𝐴) | |
26 | 1, 25 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
27 | ffn 5403 | . . . . 5 ⊢ (𝐺:𝐵⟶𝑇 → 𝐺 Fn 𝐵) | |
28 | 8, 27 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
29 | off.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
30 | off.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
31 | eqidd 2194 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
32 | eqidd 2194 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
33 | 26, 28, 29, 30, 2, 31, 32 | offval 6138 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
34 | 33 | feq1d 5390 | . 2 ⊢ (𝜑 → ((𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈 ↔ (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))):𝐶⟶𝑈)) |
35 | 24, 34 | mpbird 167 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∩ cin 3152 ↦ cmpt 4090 Fn wfn 5249 ⟶wf 5250 ‘cfv 5254 (class class class)co 5918 ∘𝑓 cof 6128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-of 6130 |
This theorem is referenced by: offeq 6144 ofnegsub 8981 lcomf 13823 psraddcl 14164 dvaddxxbr 14850 dvmulxxbr 14851 dvaddxx 14852 dvmulxx 14853 dviaddf 14854 dvimulf 14855 plyaddlem 14895 |
Copyright terms: Public domain | W3C validator |