ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  off GIF version

Theorem off 5994
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
off.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
off.2 (𝜑𝐹:𝐴𝑆)
off.3 (𝜑𝐺:𝐵𝑇)
off.4 (𝜑𝐴𝑉)
off.5 (𝜑𝐵𝑊)
off.6 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
off (𝜑 → (𝐹𝑓 𝑅𝐺):𝐶𝑈)
Distinct variable groups:   𝑦,𝐺   𝑥,𝑦,𝜑   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem off
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 off.2 . . . . 5 (𝜑𝐹:𝐴𝑆)
2 off.6 . . . . . . 7 (𝐴𝐵) = 𝐶
3 inss1 3296 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
42, 3eqsstrri 3130 . . . . . 6 𝐶𝐴
54sseli 3093 . . . . 5 (𝑧𝐶𝑧𝐴)
6 ffvelrn 5553 . . . . 5 ((𝐹:𝐴𝑆𝑧𝐴) → (𝐹𝑧) ∈ 𝑆)
71, 5, 6syl2an 287 . . . 4 ((𝜑𝑧𝐶) → (𝐹𝑧) ∈ 𝑆)
8 off.3 . . . . 5 (𝜑𝐺:𝐵𝑇)
9 inss2 3297 . . . . . . 7 (𝐴𝐵) ⊆ 𝐵
102, 9eqsstrri 3130 . . . . . 6 𝐶𝐵
1110sseli 3093 . . . . 5 (𝑧𝐶𝑧𝐵)
12 ffvelrn 5553 . . . . 5 ((𝐺:𝐵𝑇𝑧𝐵) → (𝐺𝑧) ∈ 𝑇)
138, 11, 12syl2an 287 . . . 4 ((𝜑𝑧𝐶) → (𝐺𝑧) ∈ 𝑇)
14 off.1 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
1514ralrimivva 2514 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
1615adantr 274 . . . 4 ((𝜑𝑧𝐶) → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
17 oveq1 5781 . . . . . 6 (𝑥 = (𝐹𝑧) → (𝑥𝑅𝑦) = ((𝐹𝑧)𝑅𝑦))
1817eleq1d 2208 . . . . 5 (𝑥 = (𝐹𝑧) → ((𝑥𝑅𝑦) ∈ 𝑈 ↔ ((𝐹𝑧)𝑅𝑦) ∈ 𝑈))
19 oveq2 5782 . . . . . 6 (𝑦 = (𝐺𝑧) → ((𝐹𝑧)𝑅𝑦) = ((𝐹𝑧)𝑅(𝐺𝑧)))
2019eleq1d 2208 . . . . 5 (𝑦 = (𝐺𝑧) → (((𝐹𝑧)𝑅𝑦) ∈ 𝑈 ↔ ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈))
2118, 20rspc2va 2803 . . . 4 ((((𝐹𝑧) ∈ 𝑆 ∧ (𝐺𝑧) ∈ 𝑇) ∧ ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
227, 13, 16, 21syl21anc 1215 . . 3 ((𝜑𝑧𝐶) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
23 eqid 2139 . . 3 (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧)))
2422, 23fmptd 5574 . 2 (𝜑 → (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))):𝐶𝑈)
25 ffn 5272 . . . . 5 (𝐹:𝐴𝑆𝐹 Fn 𝐴)
261, 25syl 14 . . . 4 (𝜑𝐹 Fn 𝐴)
27 ffn 5272 . . . . 5 (𝐺:𝐵𝑇𝐺 Fn 𝐵)
288, 27syl 14 . . . 4 (𝜑𝐺 Fn 𝐵)
29 off.4 . . . 4 (𝜑𝐴𝑉)
30 off.5 . . . 4 (𝜑𝐵𝑊)
31 eqidd 2140 . . . 4 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
32 eqidd 2140 . . . 4 ((𝜑𝑧𝐵) → (𝐺𝑧) = (𝐺𝑧))
3326, 28, 29, 30, 2, 31, 32offval 5989 . . 3 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
3433feq1d 5259 . 2 (𝜑 → ((𝐹𝑓 𝑅𝐺):𝐶𝑈 ↔ (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))):𝐶𝑈))
3524, 34mpbird 166 1 (𝜑 → (𝐹𝑓 𝑅𝐺):𝐶𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  cin 3070  cmpt 3989   Fn wfn 5118  wf 5119  cfv 5123  (class class class)co 5774  𝑓 cof 5980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982
This theorem is referenced by:  offeq  5995  dvaddxxbr  12834  dvmulxxbr  12835  dvaddxx  12836  dvmulxx  12837  dviaddf  12838  dvimulf  12839
  Copyright terms: Public domain W3C validator