| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > off | GIF version | ||
| Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| off.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | 
| off.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | 
| off.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | 
| off.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| off.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) | 
| off.6 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 | 
| Ref | Expression | 
|---|---|
| off | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | off.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 2 | off.6 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
| 3 | inss1 3383 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 4 | 2, 3 | eqsstrri 3216 | . . . . . 6 ⊢ 𝐶 ⊆ 𝐴 | 
| 5 | 4 | sseli 3179 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐴) | 
| 6 | ffvelcdm 5695 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝑆 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝑆) | |
| 7 | 1, 5, 6 | syl2an 289 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) ∈ 𝑆) | 
| 8 | off.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
| 9 | inss2 3384 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 10 | 2, 9 | eqsstrri 3216 | . . . . . 6 ⊢ 𝐶 ⊆ 𝐵 | 
| 11 | 10 | sseli 3179 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵) | 
| 12 | ffvelcdm 5695 | . . . . 5 ⊢ ((𝐺:𝐵⟶𝑇 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) ∈ 𝑇) | |
| 13 | 8, 11, 12 | syl2an 289 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐺‘𝑧) ∈ 𝑇) | 
| 14 | off.1 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
| 15 | 14 | ralrimivva 2579 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) | 
| 16 | 15 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) | 
| 17 | oveq1 5929 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑧) → (𝑥𝑅𝑦) = ((𝐹‘𝑧)𝑅𝑦)) | |
| 18 | 17 | eleq1d 2265 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑧) → ((𝑥𝑅𝑦) ∈ 𝑈 ↔ ((𝐹‘𝑧)𝑅𝑦) ∈ 𝑈)) | 
| 19 | oveq2 5930 | . . . . . 6 ⊢ (𝑦 = (𝐺‘𝑧) → ((𝐹‘𝑧)𝑅𝑦) = ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) | |
| 20 | 19 | eleq1d 2265 | . . . . 5 ⊢ (𝑦 = (𝐺‘𝑧) → (((𝐹‘𝑧)𝑅𝑦) ∈ 𝑈 ↔ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈)) | 
| 21 | 18, 20 | rspc2va 2882 | . . . 4 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ (𝐺‘𝑧) ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) | 
| 22 | 7, 13, 16, 21 | syl21anc 1248 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) | 
| 23 | eqid 2196 | . . 3 ⊢ (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) | |
| 24 | 22, 23 | fmptd 5716 | . 2 ⊢ (𝜑 → (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))):𝐶⟶𝑈) | 
| 25 | ffn 5407 | . . . . 5 ⊢ (𝐹:𝐴⟶𝑆 → 𝐹 Fn 𝐴) | |
| 26 | 1, 25 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | 
| 27 | ffn 5407 | . . . . 5 ⊢ (𝐺:𝐵⟶𝑇 → 𝐺 Fn 𝐵) | |
| 28 | 8, 27 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) | 
| 29 | off.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 30 | off.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 31 | eqidd 2197 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
| 32 | eqidd 2197 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
| 33 | 26, 28, 29, 30, 2, 31, 32 | offval 6143 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) | 
| 34 | 33 | feq1d 5394 | . 2 ⊢ (𝜑 → ((𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈 ↔ (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))):𝐶⟶𝑈)) | 
| 35 | 24, 34 | mpbird 167 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∩ cin 3156 ↦ cmpt 4094 Fn wfn 5253 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 ∘𝑓 cof 6133 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 | 
| This theorem is referenced by: offeq 6149 ofnegsub 8989 lcomf 13883 psraddcl 14232 dvaddxxbr 14937 dvmulxxbr 14938 dvaddxx 14939 dvmulxx 14940 dviaddf 14941 dvimulf 14942 plyaddlem 14985 | 
| Copyright terms: Public domain | W3C validator |