ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  off GIF version

Theorem off 6143
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
off.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
off.2 (𝜑𝐹:𝐴𝑆)
off.3 (𝜑𝐺:𝐵𝑇)
off.4 (𝜑𝐴𝑉)
off.5 (𝜑𝐵𝑊)
off.6 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
off (𝜑 → (𝐹𝑓 𝑅𝐺):𝐶𝑈)
Distinct variable groups:   𝑦,𝐺   𝑥,𝑦,𝜑   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem off
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 off.2 . . . . 5 (𝜑𝐹:𝐴𝑆)
2 off.6 . . . . . . 7 (𝐴𝐵) = 𝐶
3 inss1 3379 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
42, 3eqsstrri 3212 . . . . . 6 𝐶𝐴
54sseli 3175 . . . . 5 (𝑧𝐶𝑧𝐴)
6 ffvelcdm 5691 . . . . 5 ((𝐹:𝐴𝑆𝑧𝐴) → (𝐹𝑧) ∈ 𝑆)
71, 5, 6syl2an 289 . . . 4 ((𝜑𝑧𝐶) → (𝐹𝑧) ∈ 𝑆)
8 off.3 . . . . 5 (𝜑𝐺:𝐵𝑇)
9 inss2 3380 . . . . . . 7 (𝐴𝐵) ⊆ 𝐵
102, 9eqsstrri 3212 . . . . . 6 𝐶𝐵
1110sseli 3175 . . . . 5 (𝑧𝐶𝑧𝐵)
12 ffvelcdm 5691 . . . . 5 ((𝐺:𝐵𝑇𝑧𝐵) → (𝐺𝑧) ∈ 𝑇)
138, 11, 12syl2an 289 . . . 4 ((𝜑𝑧𝐶) → (𝐺𝑧) ∈ 𝑇)
14 off.1 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
1514ralrimivva 2576 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
1615adantr 276 . . . 4 ((𝜑𝑧𝐶) → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
17 oveq1 5925 . . . . . 6 (𝑥 = (𝐹𝑧) → (𝑥𝑅𝑦) = ((𝐹𝑧)𝑅𝑦))
1817eleq1d 2262 . . . . 5 (𝑥 = (𝐹𝑧) → ((𝑥𝑅𝑦) ∈ 𝑈 ↔ ((𝐹𝑧)𝑅𝑦) ∈ 𝑈))
19 oveq2 5926 . . . . . 6 (𝑦 = (𝐺𝑧) → ((𝐹𝑧)𝑅𝑦) = ((𝐹𝑧)𝑅(𝐺𝑧)))
2019eleq1d 2262 . . . . 5 (𝑦 = (𝐺𝑧) → (((𝐹𝑧)𝑅𝑦) ∈ 𝑈 ↔ ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈))
2118, 20rspc2va 2878 . . . 4 ((((𝐹𝑧) ∈ 𝑆 ∧ (𝐺𝑧) ∈ 𝑇) ∧ ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
227, 13, 16, 21syl21anc 1248 . . 3 ((𝜑𝑧𝐶) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
23 eqid 2193 . . 3 (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧)))
2422, 23fmptd 5712 . 2 (𝜑 → (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))):𝐶𝑈)
25 ffn 5403 . . . . 5 (𝐹:𝐴𝑆𝐹 Fn 𝐴)
261, 25syl 14 . . . 4 (𝜑𝐹 Fn 𝐴)
27 ffn 5403 . . . . 5 (𝐺:𝐵𝑇𝐺 Fn 𝐵)
288, 27syl 14 . . . 4 (𝜑𝐺 Fn 𝐵)
29 off.4 . . . 4 (𝜑𝐴𝑉)
30 off.5 . . . 4 (𝜑𝐵𝑊)
31 eqidd 2194 . . . 4 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
32 eqidd 2194 . . . 4 ((𝜑𝑧𝐵) → (𝐺𝑧) = (𝐺𝑧))
3326, 28, 29, 30, 2, 31, 32offval 6138 . . 3 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
3433feq1d 5390 . 2 (𝜑 → ((𝐹𝑓 𝑅𝐺):𝐶𝑈 ↔ (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))):𝐶𝑈))
3524, 34mpbird 167 1 (𝜑 → (𝐹𝑓 𝑅𝐺):𝐶𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  cin 3152  cmpt 4090   Fn wfn 5249  wf 5250  cfv 5254  (class class class)co 5918  𝑓 cof 6128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130
This theorem is referenced by:  offeq  6144  ofnegsub  8981  lcomf  13823  psraddcl  14164  dvaddxxbr  14850  dvmulxxbr  14851  dvaddxx  14852  dvmulxx  14853  dviaddf  14854  dvimulf  14855  plyaddlem  14895
  Copyright terms: Public domain W3C validator