Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > off | GIF version |
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
off.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
off.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
off.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
off.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
off.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
off.6 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
Ref | Expression |
---|---|
off | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | off.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
2 | off.6 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
3 | inss1 3347 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
4 | 2, 3 | eqsstrri 3180 | . . . . . 6 ⊢ 𝐶 ⊆ 𝐴 |
5 | 4 | sseli 3143 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐴) |
6 | ffvelrn 5629 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝑆 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝑆) | |
7 | 1, 5, 6 | syl2an 287 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) ∈ 𝑆) |
8 | off.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
9 | inss2 3348 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
10 | 2, 9 | eqsstrri 3180 | . . . . . 6 ⊢ 𝐶 ⊆ 𝐵 |
11 | 10 | sseli 3143 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵) |
12 | ffvelrn 5629 | . . . . 5 ⊢ ((𝐺:𝐵⟶𝑇 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) ∈ 𝑇) | |
13 | 8, 11, 12 | syl2an 287 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐺‘𝑧) ∈ 𝑇) |
14 | off.1 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
15 | 14 | ralrimivva 2552 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
16 | 15 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
17 | oveq1 5860 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑧) → (𝑥𝑅𝑦) = ((𝐹‘𝑧)𝑅𝑦)) | |
18 | 17 | eleq1d 2239 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑧) → ((𝑥𝑅𝑦) ∈ 𝑈 ↔ ((𝐹‘𝑧)𝑅𝑦) ∈ 𝑈)) |
19 | oveq2 5861 | . . . . . 6 ⊢ (𝑦 = (𝐺‘𝑧) → ((𝐹‘𝑧)𝑅𝑦) = ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) | |
20 | 19 | eleq1d 2239 | . . . . 5 ⊢ (𝑦 = (𝐺‘𝑧) → (((𝐹‘𝑧)𝑅𝑦) ∈ 𝑈 ↔ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈)) |
21 | 18, 20 | rspc2va 2848 | . . . 4 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ (𝐺‘𝑧) ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
22 | 7, 13, 16, 21 | syl21anc 1232 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
23 | eqid 2170 | . . 3 ⊢ (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) | |
24 | 22, 23 | fmptd 5650 | . 2 ⊢ (𝜑 → (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))):𝐶⟶𝑈) |
25 | ffn 5347 | . . . . 5 ⊢ (𝐹:𝐴⟶𝑆 → 𝐹 Fn 𝐴) | |
26 | 1, 25 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
27 | ffn 5347 | . . . . 5 ⊢ (𝐺:𝐵⟶𝑇 → 𝐺 Fn 𝐵) | |
28 | 8, 27 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
29 | off.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
30 | off.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
31 | eqidd 2171 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
32 | eqidd 2171 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
33 | 26, 28, 29, 30, 2, 31, 32 | offval 6068 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
34 | 33 | feq1d 5334 | . 2 ⊢ (𝜑 → ((𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈 ↔ (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))):𝐶⟶𝑈)) |
35 | 24, 34 | mpbird 166 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∩ cin 3120 ↦ cmpt 4050 Fn wfn 5193 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 ∘𝑓 cof 6059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-of 6061 |
This theorem is referenced by: offeq 6074 dvaddxxbr 13459 dvmulxxbr 13460 dvaddxx 13461 dvmulxx 13462 dviaddf 13463 dvimulf 13464 |
Copyright terms: Public domain | W3C validator |