ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  off GIF version

Theorem off 6097
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
off.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
off.2 (𝜑𝐹:𝐴𝑆)
off.3 (𝜑𝐺:𝐵𝑇)
off.4 (𝜑𝐴𝑉)
off.5 (𝜑𝐵𝑊)
off.6 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
off (𝜑 → (𝐹𝑓 𝑅𝐺):𝐶𝑈)
Distinct variable groups:   𝑦,𝐺   𝑥,𝑦,𝜑   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem off
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 off.2 . . . . 5 (𝜑𝐹:𝐴𝑆)
2 off.6 . . . . . . 7 (𝐴𝐵) = 𝐶
3 inss1 3357 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
42, 3eqsstrri 3190 . . . . . 6 𝐶𝐴
54sseli 3153 . . . . 5 (𝑧𝐶𝑧𝐴)
6 ffvelcdm 5651 . . . . 5 ((𝐹:𝐴𝑆𝑧𝐴) → (𝐹𝑧) ∈ 𝑆)
71, 5, 6syl2an 289 . . . 4 ((𝜑𝑧𝐶) → (𝐹𝑧) ∈ 𝑆)
8 off.3 . . . . 5 (𝜑𝐺:𝐵𝑇)
9 inss2 3358 . . . . . . 7 (𝐴𝐵) ⊆ 𝐵
102, 9eqsstrri 3190 . . . . . 6 𝐶𝐵
1110sseli 3153 . . . . 5 (𝑧𝐶𝑧𝐵)
12 ffvelcdm 5651 . . . . 5 ((𝐺:𝐵𝑇𝑧𝐵) → (𝐺𝑧) ∈ 𝑇)
138, 11, 12syl2an 289 . . . 4 ((𝜑𝑧𝐶) → (𝐺𝑧) ∈ 𝑇)
14 off.1 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
1514ralrimivva 2559 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
1615adantr 276 . . . 4 ((𝜑𝑧𝐶) → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
17 oveq1 5884 . . . . . 6 (𝑥 = (𝐹𝑧) → (𝑥𝑅𝑦) = ((𝐹𝑧)𝑅𝑦))
1817eleq1d 2246 . . . . 5 (𝑥 = (𝐹𝑧) → ((𝑥𝑅𝑦) ∈ 𝑈 ↔ ((𝐹𝑧)𝑅𝑦) ∈ 𝑈))
19 oveq2 5885 . . . . . 6 (𝑦 = (𝐺𝑧) → ((𝐹𝑧)𝑅𝑦) = ((𝐹𝑧)𝑅(𝐺𝑧)))
2019eleq1d 2246 . . . . 5 (𝑦 = (𝐺𝑧) → (((𝐹𝑧)𝑅𝑦) ∈ 𝑈 ↔ ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈))
2118, 20rspc2va 2857 . . . 4 ((((𝐹𝑧) ∈ 𝑆 ∧ (𝐺𝑧) ∈ 𝑇) ∧ ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
227, 13, 16, 21syl21anc 1237 . . 3 ((𝜑𝑧𝐶) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
23 eqid 2177 . . 3 (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧)))
2422, 23fmptd 5672 . 2 (𝜑 → (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))):𝐶𝑈)
25 ffn 5367 . . . . 5 (𝐹:𝐴𝑆𝐹 Fn 𝐴)
261, 25syl 14 . . . 4 (𝜑𝐹 Fn 𝐴)
27 ffn 5367 . . . . 5 (𝐺:𝐵𝑇𝐺 Fn 𝐵)
288, 27syl 14 . . . 4 (𝜑𝐺 Fn 𝐵)
29 off.4 . . . 4 (𝜑𝐴𝑉)
30 off.5 . . . 4 (𝜑𝐵𝑊)
31 eqidd 2178 . . . 4 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
32 eqidd 2178 . . . 4 ((𝜑𝑧𝐵) → (𝐺𝑧) = (𝐺𝑧))
3326, 28, 29, 30, 2, 31, 32offval 6092 . . 3 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
3433feq1d 5354 . 2 (𝜑 → ((𝐹𝑓 𝑅𝐺):𝐶𝑈 ↔ (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))):𝐶𝑈))
3524, 34mpbird 167 1 (𝜑 → (𝐹𝑓 𝑅𝐺):𝐶𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  cin 3130  cmpt 4066   Fn wfn 5213  wf 5214  cfv 5218  (class class class)co 5877  𝑓 cof 6083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-of 6085
This theorem is referenced by:  offeq  6098  lcomf  13422  dvaddxxbr  14250  dvmulxxbr  14251  dvaddxx  14252  dvmulxx  14253  dviaddf  14254  dvimulf  14255
  Copyright terms: Public domain W3C validator