ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofres GIF version

Theorem ofres 6099
Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
ofres.1 (𝜑𝐹 Fn 𝐴)
ofres.2 (𝜑𝐺 Fn 𝐵)
ofres.3 (𝜑𝐴𝑉)
ofres.4 (𝜑𝐵𝑊)
ofres.5 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
ofres (𝜑 → (𝐹𝑓 𝑅𝐺) = ((𝐹𝐶) ∘𝑓 𝑅(𝐺𝐶)))

Proof of Theorem ofres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofres.1 . . 3 (𝜑𝐹 Fn 𝐴)
2 ofres.2 . . 3 (𝜑𝐺 Fn 𝐵)
3 ofres.3 . . 3 (𝜑𝐴𝑉)
4 ofres.4 . . 3 (𝜑𝐵𝑊)
5 ofres.5 . . 3 (𝐴𝐵) = 𝐶
6 eqidd 2178 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2178 . . 3 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7offval 6092 . 2 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥𝐶 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
9 inss1 3357 . . . . 5 (𝐴𝐵) ⊆ 𝐴
105, 9eqsstrri 3190 . . . 4 𝐶𝐴
11 fnssres 5331 . . . 4 ((𝐹 Fn 𝐴𝐶𝐴) → (𝐹𝐶) Fn 𝐶)
121, 10, 11sylancl 413 . . 3 (𝜑 → (𝐹𝐶) Fn 𝐶)
13 inss2 3358 . . . . 5 (𝐴𝐵) ⊆ 𝐵
145, 13eqsstrri 3190 . . . 4 𝐶𝐵
15 fnssres 5331 . . . 4 ((𝐺 Fn 𝐵𝐶𝐵) → (𝐺𝐶) Fn 𝐶)
162, 14, 15sylancl 413 . . 3 (𝜑 → (𝐺𝐶) Fn 𝐶)
17 ssexg 4144 . . . 4 ((𝐶𝐴𝐴𝑉) → 𝐶 ∈ V)
1810, 3, 17sylancr 414 . . 3 (𝜑𝐶 ∈ V)
19 inidm 3346 . . 3 (𝐶𝐶) = 𝐶
20 fvres 5541 . . . 4 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
2120adantl 277 . . 3 ((𝜑𝑥𝐶) → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
22 fvres 5541 . . . 4 (𝑥𝐶 → ((𝐺𝐶)‘𝑥) = (𝐺𝑥))
2322adantl 277 . . 3 ((𝜑𝑥𝐶) → ((𝐺𝐶)‘𝑥) = (𝐺𝑥))
2412, 16, 18, 18, 19, 21, 23offval 6092 . 2 (𝜑 → ((𝐹𝐶) ∘𝑓 𝑅(𝐺𝐶)) = (𝑥𝐶 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
258, 24eqtr4d 2213 1 (𝜑 → (𝐹𝑓 𝑅𝐺) = ((𝐹𝐶) ∘𝑓 𝑅(𝐺𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  Vcvv 2739  cin 3130  wss 3131  cmpt 4066  cres 4630   Fn wfn 5213  cfv 5218  (class class class)co 5877  𝑓 cof 6083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-of 6085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator