| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofres | GIF version | ||
| Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| ofres.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| ofres.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| ofres.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofres.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ofres.5 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| ofres | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = ((𝐹 ↾ 𝐶) ∘𝑓 𝑅(𝐺 ↾ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofres.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | ofres.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | ofres.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | ofres.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | ofres.5 | . . 3 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
| 6 | eqidd 2206 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 7 | eqidd 2206 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | offval 6166 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 9 | inss1 3393 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 10 | 5, 9 | eqsstrri 3226 | . . . 4 ⊢ 𝐶 ⊆ 𝐴 |
| 11 | fnssres 5389 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
| 12 | 1, 10, 11 | sylancl 413 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶) Fn 𝐶) |
| 13 | inss2 3394 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 14 | 5, 13 | eqsstrri 3226 | . . . 4 ⊢ 𝐶 ⊆ 𝐵 |
| 15 | fnssres 5389 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐶 ⊆ 𝐵) → (𝐺 ↾ 𝐶) Fn 𝐶) | |
| 16 | 2, 14, 15 | sylancl 413 | . . 3 ⊢ (𝜑 → (𝐺 ↾ 𝐶) Fn 𝐶) |
| 17 | ssexg 4183 | . . . 4 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐶 ∈ V) | |
| 18 | 10, 3, 17 | sylancr 414 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
| 19 | inidm 3382 | . . 3 ⊢ (𝐶 ∩ 𝐶) = 𝐶 | |
| 20 | fvres 5600 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
| 21 | 20 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) |
| 22 | fvres 5600 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → ((𝐺 ↾ 𝐶)‘𝑥) = (𝐺‘𝑥)) | |
| 23 | 22 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐺 ↾ 𝐶)‘𝑥) = (𝐺‘𝑥)) |
| 24 | 12, 16, 18, 18, 19, 21, 23 | offval 6166 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) ∘𝑓 𝑅(𝐺 ↾ 𝐶)) = (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 25 | 8, 24 | eqtr4d 2241 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = ((𝐹 ↾ 𝐶) ∘𝑓 𝑅(𝐺 ↾ 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∩ cin 3165 ⊆ wss 3166 ↦ cmpt 4105 ↾ cres 4677 Fn wfn 5266 ‘cfv 5271 (class class class)co 5944 ∘𝑓 cof 6156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-of 6158 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |