| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofres | GIF version | ||
| Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| ofres.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| ofres.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| ofres.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofres.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ofres.5 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| ofres | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = ((𝐹 ↾ 𝐶) ∘𝑓 𝑅(𝐺 ↾ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofres.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | ofres.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | ofres.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | ofres.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | ofres.5 | . . 3 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
| 6 | eqidd 2208 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 7 | eqidd 2208 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | offval 6189 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 9 | inss1 3401 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 10 | 5, 9 | eqsstrri 3234 | . . . 4 ⊢ 𝐶 ⊆ 𝐴 |
| 11 | fnssres 5408 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
| 12 | 1, 10, 11 | sylancl 413 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶) Fn 𝐶) |
| 13 | inss2 3402 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 14 | 5, 13 | eqsstrri 3234 | . . . 4 ⊢ 𝐶 ⊆ 𝐵 |
| 15 | fnssres 5408 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐶 ⊆ 𝐵) → (𝐺 ↾ 𝐶) Fn 𝐶) | |
| 16 | 2, 14, 15 | sylancl 413 | . . 3 ⊢ (𝜑 → (𝐺 ↾ 𝐶) Fn 𝐶) |
| 17 | ssexg 4199 | . . . 4 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐶 ∈ V) | |
| 18 | 10, 3, 17 | sylancr 414 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
| 19 | inidm 3390 | . . 3 ⊢ (𝐶 ∩ 𝐶) = 𝐶 | |
| 20 | fvres 5623 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
| 21 | 20 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) |
| 22 | fvres 5623 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → ((𝐺 ↾ 𝐶)‘𝑥) = (𝐺‘𝑥)) | |
| 23 | 22 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐺 ↾ 𝐶)‘𝑥) = (𝐺‘𝑥)) |
| 24 | 12, 16, 18, 18, 19, 21, 23 | offval 6189 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) ∘𝑓 𝑅(𝐺 ↾ 𝐶)) = (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 25 | 8, 24 | eqtr4d 2243 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = ((𝐹 ↾ 𝐶) ∘𝑓 𝑅(𝐺 ↾ 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ∩ cin 3173 ⊆ wss 3174 ↦ cmpt 4121 ↾ cres 4695 Fn wfn 5285 ‘cfv 5290 (class class class)co 5967 ∘𝑓 cof 6179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-of 6181 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |