ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofres GIF version

Theorem ofres 6172
Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
ofres.1 (𝜑𝐹 Fn 𝐴)
ofres.2 (𝜑𝐺 Fn 𝐵)
ofres.3 (𝜑𝐴𝑉)
ofres.4 (𝜑𝐵𝑊)
ofres.5 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
ofres (𝜑 → (𝐹𝑓 𝑅𝐺) = ((𝐹𝐶) ∘𝑓 𝑅(𝐺𝐶)))

Proof of Theorem ofres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofres.1 . . 3 (𝜑𝐹 Fn 𝐴)
2 ofres.2 . . 3 (𝜑𝐺 Fn 𝐵)
3 ofres.3 . . 3 (𝜑𝐴𝑉)
4 ofres.4 . . 3 (𝜑𝐵𝑊)
5 ofres.5 . . 3 (𝐴𝐵) = 𝐶
6 eqidd 2205 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2205 . . 3 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7offval 6165 . 2 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥𝐶 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
9 inss1 3392 . . . . 5 (𝐴𝐵) ⊆ 𝐴
105, 9eqsstrri 3225 . . . 4 𝐶𝐴
11 fnssres 5388 . . . 4 ((𝐹 Fn 𝐴𝐶𝐴) → (𝐹𝐶) Fn 𝐶)
121, 10, 11sylancl 413 . . 3 (𝜑 → (𝐹𝐶) Fn 𝐶)
13 inss2 3393 . . . . 5 (𝐴𝐵) ⊆ 𝐵
145, 13eqsstrri 3225 . . . 4 𝐶𝐵
15 fnssres 5388 . . . 4 ((𝐺 Fn 𝐵𝐶𝐵) → (𝐺𝐶) Fn 𝐶)
162, 14, 15sylancl 413 . . 3 (𝜑 → (𝐺𝐶) Fn 𝐶)
17 ssexg 4182 . . . 4 ((𝐶𝐴𝐴𝑉) → 𝐶 ∈ V)
1810, 3, 17sylancr 414 . . 3 (𝜑𝐶 ∈ V)
19 inidm 3381 . . 3 (𝐶𝐶) = 𝐶
20 fvres 5599 . . . 4 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
2120adantl 277 . . 3 ((𝜑𝑥𝐶) → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
22 fvres 5599 . . . 4 (𝑥𝐶 → ((𝐺𝐶)‘𝑥) = (𝐺𝑥))
2322adantl 277 . . 3 ((𝜑𝑥𝐶) → ((𝐺𝐶)‘𝑥) = (𝐺𝑥))
2412, 16, 18, 18, 19, 21, 23offval 6165 . 2 (𝜑 → ((𝐹𝐶) ∘𝑓 𝑅(𝐺𝐶)) = (𝑥𝐶 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
258, 24eqtr4d 2240 1 (𝜑 → (𝐹𝑓 𝑅𝐺) = ((𝐹𝐶) ∘𝑓 𝑅(𝐺𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  Vcvv 2771  cin 3164  wss 3165  cmpt 4104  cres 4676   Fn wfn 5265  cfv 5270  (class class class)co 5943  𝑓 cof 6155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-of 6157
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator