ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofrfval GIF version

Theorem ofrfval 6058
Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
offval.6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
offval.7 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
Assertion
Ref Expression
ofrfval (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofrfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
2 offval.3 . . . 4 (𝜑𝐴𝑉)
3 fnex 5707 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
41, 2, 3syl2anc 409 . . 3 (𝜑𝐹 ∈ V)
5 offval.2 . . . 4 (𝜑𝐺 Fn 𝐵)
6 offval.4 . . . 4 (𝜑𝐵𝑊)
7 fnex 5707 . . . 4 ((𝐺 Fn 𝐵𝐵𝑊) → 𝐺 ∈ V)
85, 6, 7syl2anc 409 . . 3 (𝜑𝐺 ∈ V)
9 dmeq 4804 . . . . . 6 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
10 dmeq 4804 . . . . . 6 (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺)
119, 10ineqan12d 3325 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom 𝐺))
12 fveq1 5485 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
13 fveq1 5485 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
1412, 13breqan12d 3998 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)𝑅(𝑔𝑥) ↔ (𝐹𝑥)𝑅(𝐺𝑥)))
1511, 14raleqbidv 2673 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥) ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹𝑥)𝑅(𝐺𝑥)))
16 df-ofr 6051 . . . 4 𝑟 𝑅 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥)}
1715, 16brabga 4242 . . 3 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹𝑥)𝑅(𝐺𝑥)))
184, 8, 17syl2anc 409 . 2 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹𝑥)𝑅(𝐺𝑥)))
19 fndm 5287 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
201, 19syl 14 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
21 fndm 5287 . . . . . 6 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
225, 21syl 14 . . . . 5 (𝜑 → dom 𝐺 = 𝐵)
2320, 22ineq12d 3324 . . . 4 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
24 offval.5 . . . 4 (𝐴𝐵) = 𝑆
2523, 24eqtrdi 2215 . . 3 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝑆)
2625raleqdv 2667 . 2 (𝜑 → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹𝑥)𝑅(𝐺𝑥) ↔ ∀𝑥𝑆 (𝐹𝑥)𝑅(𝐺𝑥)))
27 inss1 3342 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
2824, 27eqsstrri 3175 . . . . . 6 𝑆𝐴
2928sseli 3138 . . . . 5 (𝑥𝑆𝑥𝐴)
30 offval.6 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
3129, 30sylan2 284 . . . 4 ((𝜑𝑥𝑆) → (𝐹𝑥) = 𝐶)
32 inss2 3343 . . . . . . 7 (𝐴𝐵) ⊆ 𝐵
3324, 32eqsstrri 3175 . . . . . 6 𝑆𝐵
3433sseli 3138 . . . . 5 (𝑥𝑆𝑥𝐵)
35 offval.7 . . . . 5 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
3634, 35sylan2 284 . . . 4 ((𝜑𝑥𝑆) → (𝐺𝑥) = 𝐷)
3731, 36breq12d 3995 . . 3 ((𝜑𝑥𝑆) → ((𝐹𝑥)𝑅(𝐺𝑥) ↔ 𝐶𝑅𝐷))
3837ralbidva 2462 . 2 (𝜑 → (∀𝑥𝑆 (𝐹𝑥)𝑅(𝐺𝑥) ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
3918, 26, 383bitrd 213 1 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥𝑆 𝐶𝑅𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  Vcvv 2726  cin 3115   class class class wbr 3982  dom cdm 4604   Fn wfn 5183  cfv 5188  𝑟 cofr 6049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ofr 6051
This theorem is referenced by:  ofrval  6060  ofrfval2  6066  caofref  6071  caofrss  6074  caoftrn  6075
  Copyright terms: Public domain W3C validator