Step | Hyp | Ref
| Expression |
1 | | offval.1 |
. . . 4
⊢ (𝜑 → 𝐹 Fn 𝐴) |
2 | | offval.3 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
3 | | fnex 5718 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) |
4 | 1, 2, 3 | syl2anc 409 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
5 | | offval.2 |
. . . 4
⊢ (𝜑 → 𝐺 Fn 𝐵) |
6 | | offval.4 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
7 | | fnex 5718 |
. . . 4
⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑊) → 𝐺 ∈ V) |
8 | 5, 6, 7 | syl2anc 409 |
. . 3
⊢ (𝜑 → 𝐺 ∈ V) |
9 | | dmeq 4811 |
. . . . . 6
⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) |
10 | | dmeq 4811 |
. . . . . 6
⊢ (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺) |
11 | 9, 10 | ineqan12d 3330 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom 𝐺)) |
12 | | fveq1 5495 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
13 | | fveq1 5495 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (𝑔‘𝑥) = (𝐺‘𝑥)) |
14 | 12, 13 | breqan12d 4005 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ (𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
15 | 11, 14 | raleqbidv 2677 |
. . . 4
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
16 | | df-ofr 6062 |
. . . 4
⊢
∘𝑟 𝑅 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} |
17 | 15, 16 | brabga 4249 |
. . 3
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 ∘𝑟
𝑅𝐺 ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
18 | 4, 8, 17 | syl2anc 409 |
. 2
⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
19 | | fndm 5297 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
20 | 1, 19 | syl 14 |
. . . . 5
⊢ (𝜑 → dom 𝐹 = 𝐴) |
21 | | fndm 5297 |
. . . . . 6
⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) |
22 | 5, 21 | syl 14 |
. . . . 5
⊢ (𝜑 → dom 𝐺 = 𝐵) |
23 | 20, 22 | ineq12d 3329 |
. . . 4
⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) = (𝐴 ∩ 𝐵)) |
24 | | offval.5 |
. . . 4
⊢ (𝐴 ∩ 𝐵) = 𝑆 |
25 | 23, 24 | eqtrdi 2219 |
. . 3
⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝑆) |
26 | 25 | raleqdv 2671 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹‘𝑥)𝑅(𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
27 | | inss1 3347 |
. . . . . . 7
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
28 | 24, 27 | eqsstrri 3180 |
. . . . . 6
⊢ 𝑆 ⊆ 𝐴 |
29 | 28 | sseli 3143 |
. . . . 5
⊢ (𝑥 ∈ 𝑆 → 𝑥 ∈ 𝐴) |
30 | | offval.6 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) |
31 | 29, 30 | sylan2 284 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐹‘𝑥) = 𝐶) |
32 | | inss2 3348 |
. . . . . . 7
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
33 | 24, 32 | eqsstrri 3180 |
. . . . . 6
⊢ 𝑆 ⊆ 𝐵 |
34 | 33 | sseli 3143 |
. . . . 5
⊢ (𝑥 ∈ 𝑆 → 𝑥 ∈ 𝐵) |
35 | | offval.7 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) |
36 | 34, 35 | sylan2 284 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑥) = 𝐷) |
37 | 31, 36 | breq12d 4002 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥) ↔ 𝐶𝑅𝐷)) |
38 | 37 | ralbidva 2466 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑆 (𝐹‘𝑥)𝑅(𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |
39 | 18, 26, 38 | 3bitrd 213 |
1
⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |