ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofco GIF version

Theorem ofco 6154
Description: The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.)
Hypotheses
Ref Expression
ofco.1 (𝜑𝐹 Fn 𝐴)
ofco.2 (𝜑𝐺 Fn 𝐵)
ofco.3 (𝜑𝐻:𝐷𝐶)
ofco.4 (𝜑𝐴𝑉)
ofco.5 (𝜑𝐵𝑊)
ofco.6 (𝜑𝐷𝑋)
ofco.7 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
ofco (𝜑 → ((𝐹𝑓 𝑅𝐺) ∘ 𝐻) = ((𝐹𝐻) ∘𝑓 𝑅(𝐺𝐻)))

Proof of Theorem ofco
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofco.3 . . . 4 (𝜑𝐻:𝐷𝐶)
21ffvelcdmda 5697 . . 3 ((𝜑𝑥𝐷) → (𝐻𝑥) ∈ 𝐶)
31feqmptd 5614 . . 3 (𝜑𝐻 = (𝑥𝐷 ↦ (𝐻𝑥)))
4 ofco.1 . . . 4 (𝜑𝐹 Fn 𝐴)
5 ofco.2 . . . 4 (𝜑𝐺 Fn 𝐵)
6 ofco.4 . . . 4 (𝜑𝐴𝑉)
7 ofco.5 . . . 4 (𝜑𝐵𝑊)
8 ofco.7 . . . 4 (𝐴𝐵) = 𝐶
9 eqidd 2197 . . . 4 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝐹𝑦))
10 eqidd 2197 . . . 4 ((𝜑𝑦𝐵) → (𝐺𝑦) = (𝐺𝑦))
114, 5, 6, 7, 8, 9, 10offval 6143 . . 3 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑦𝐶 ↦ ((𝐹𝑦)𝑅(𝐺𝑦))))
12 fveq2 5558 . . . 4 (𝑦 = (𝐻𝑥) → (𝐹𝑦) = (𝐹‘(𝐻𝑥)))
13 fveq2 5558 . . . 4 (𝑦 = (𝐻𝑥) → (𝐺𝑦) = (𝐺‘(𝐻𝑥)))
1412, 13oveq12d 5940 . . 3 (𝑦 = (𝐻𝑥) → ((𝐹𝑦)𝑅(𝐺𝑦)) = ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥))))
152, 3, 11, 14fmptco 5728 . 2 (𝜑 → ((𝐹𝑓 𝑅𝐺) ∘ 𝐻) = (𝑥𝐷 ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
16 inss1 3383 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
178, 16eqsstrri 3216 . . . . 5 𝐶𝐴
18 fss 5419 . . . . 5 ((𝐻:𝐷𝐶𝐶𝐴) → 𝐻:𝐷𝐴)
191, 17, 18sylancl 413 . . . 4 (𝜑𝐻:𝐷𝐴)
20 fnfco 5432 . . . 4 ((𝐹 Fn 𝐴𝐻:𝐷𝐴) → (𝐹𝐻) Fn 𝐷)
214, 19, 20syl2anc 411 . . 3 (𝜑 → (𝐹𝐻) Fn 𝐷)
22 inss2 3384 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
238, 22eqsstrri 3216 . . . . 5 𝐶𝐵
24 fss 5419 . . . . 5 ((𝐻:𝐷𝐶𝐶𝐵) → 𝐻:𝐷𝐵)
251, 23, 24sylancl 413 . . . 4 (𝜑𝐻:𝐷𝐵)
26 fnfco 5432 . . . 4 ((𝐺 Fn 𝐵𝐻:𝐷𝐵) → (𝐺𝐻) Fn 𝐷)
275, 25, 26syl2anc 411 . . 3 (𝜑 → (𝐺𝐻) Fn 𝐷)
28 ofco.6 . . 3 (𝜑𝐷𝑋)
29 inidm 3372 . . 3 (𝐷𝐷) = 𝐷
30 ffn 5407 . . . . 5 (𝐻:𝐷𝐶𝐻 Fn 𝐷)
311, 30syl 14 . . . 4 (𝜑𝐻 Fn 𝐷)
32 fvco2 5630 . . . 4 ((𝐻 Fn 𝐷𝑥𝐷) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
3331, 32sylan 283 . . 3 ((𝜑𝑥𝐷) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
34 fvco2 5630 . . . 4 ((𝐻 Fn 𝐷𝑥𝐷) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
3531, 34sylan 283 . . 3 ((𝜑𝑥𝐷) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
3621, 27, 28, 28, 29, 33, 35offval 6143 . 2 (𝜑 → ((𝐹𝐻) ∘𝑓 𝑅(𝐺𝐻)) = (𝑥𝐷 ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
3715, 36eqtr4d 2232 1 (𝜑 → ((𝐹𝑓 𝑅𝐺) ∘ 𝐻) = ((𝐹𝐻) ∘𝑓 𝑅(𝐺𝐻)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cin 3156  wss 3157  cmpt 4094  ccom 4667   Fn wfn 5253  wf 5254  cfv 5258  (class class class)co 5922  𝑓 cof 6133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator