| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofvalg | GIF version | ||
| Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.) |
| Ref | Expression |
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
| ofval.6 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
| ofval.7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) |
| ofval.8 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐶𝑅𝐷) ∈ 𝑈) |
| Ref | Expression |
|---|---|
| ofvalg | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offval.2 | . . . . 5 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | offval.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | offval.4 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | offval.5 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 6 | eqidd 2205 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 7 | eqidd 2205 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | offval 6165 | . . . 4 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 9 | 8 | fveq1d 5577 | . . 3 ⊢ (𝜑 → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑋) = ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋)) |
| 10 | 9 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑋) = ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋)) |
| 11 | eqid 2204 | . . 3 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) | |
| 12 | fveq2 5575 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 13 | fveq2 5575 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
| 14 | 12, 13 | oveq12d 5961 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 15 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 16 | inss1 3392 | . . . . . . . 8 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 17 | 5, 16 | eqsstrri 3225 | . . . . . . 7 ⊢ 𝑆 ⊆ 𝐴 |
| 18 | 17 | sseli 3188 | . . . . . 6 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐴) |
| 19 | ofval.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
| 20 | 18, 19 | sylan2 286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) = 𝐶) |
| 21 | inss2 3393 | . . . . . . . 8 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 22 | 5, 21 | eqsstrri 3225 | . . . . . . 7 ⊢ 𝑆 ⊆ 𝐵 |
| 23 | 22 | sseli 3188 | . . . . . 6 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐵) |
| 24 | ofval.7 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) | |
| 25 | 23, 24 | sylan2 286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑋) = 𝐷) |
| 26 | 20, 25 | oveq12d 5961 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) = (𝐶𝑅𝐷)) |
| 27 | ofval.8 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐶𝑅𝐷) ∈ 𝑈) | |
| 28 | 26, 27 | eqeltrd 2281 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) ∈ 𝑈) |
| 29 | 11, 14, 15, 28 | fvmptd3 5672 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 30 | 10, 29, 26 | 3eqtrd 2241 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ∩ cin 3164 ↦ cmpt 4104 Fn wfn 5265 ‘cfv 5270 (class class class)co 5943 ∘𝑓 cof 6155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-of 6157 |
| This theorem is referenced by: offeq 6171 ofc1g 6179 ofc2g 6180 ofnegsub 9034 gsumfzmptfidmadd 13646 mplsubgfilemcl 14432 dvaddxxbr 15144 dvmulxxbr 15145 plyaddlem1 15190 |
| Copyright terms: Public domain | W3C validator |