ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofvalg GIF version

Theorem ofvalg 6059
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
ofval.6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
ofval.7 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
ofval.8 ((𝜑𝑋𝑆) → (𝐶𝑅𝐷) ∈ 𝑈)
Assertion
Ref Expression
ofvalg ((𝜑𝑋𝑆) → ((𝐹𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))

Proof of Theorem ofvalg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . 5 (𝜑𝐹 Fn 𝐴)
2 offval.2 . . . . 5 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . . . 5 (𝜑𝐴𝑉)
4 offval.4 . . . . 5 (𝜑𝐵𝑊)
5 offval.5 . . . . 5 (𝐴𝐵) = 𝑆
6 eqidd 2166 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2166 . . . . 5 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7offval 6057 . . . 4 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
98fveq1d 5488 . . 3 (𝜑 → ((𝐹𝑓 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
109adantr 274 . 2 ((𝜑𝑋𝑆) → ((𝐹𝑓 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
11 eqid 2165 . . 3 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
12 fveq2 5486 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
13 fveq2 5486 . . . 4 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1412, 13oveq12d 5860 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥)𝑅(𝐺𝑥)) = ((𝐹𝑋)𝑅(𝐺𝑋)))
15 simpr 109 . . 3 ((𝜑𝑋𝑆) → 𝑋𝑆)
16 inss1 3342 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐴
175, 16eqsstrri 3175 . . . . . . 7 𝑆𝐴
1817sseli 3138 . . . . . 6 (𝑋𝑆𝑋𝐴)
19 ofval.6 . . . . . 6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
2018, 19sylan2 284 . . . . 5 ((𝜑𝑋𝑆) → (𝐹𝑋) = 𝐶)
21 inss2 3343 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐵
225, 21eqsstrri 3175 . . . . . . 7 𝑆𝐵
2322sseli 3138 . . . . . 6 (𝑋𝑆𝑋𝐵)
24 ofval.7 . . . . . 6 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
2523, 24sylan2 284 . . . . 5 ((𝜑𝑋𝑆) → (𝐺𝑋) = 𝐷)
2620, 25oveq12d 5860 . . . 4 ((𝜑𝑋𝑆) → ((𝐹𝑋)𝑅(𝐺𝑋)) = (𝐶𝑅𝐷))
27 ofval.8 . . . 4 ((𝜑𝑋𝑆) → (𝐶𝑅𝐷) ∈ 𝑈)
2826, 27eqeltrd 2243 . . 3 ((𝜑𝑋𝑆) → ((𝐹𝑋)𝑅(𝐺𝑋)) ∈ 𝑈)
2911, 14, 15, 28fvmptd3 5579 . 2 ((𝜑𝑋𝑆) → ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
3010, 29, 263eqtrd 2202 1 ((𝜑𝑋𝑆) → ((𝐹𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  cin 3115  cmpt 4043   Fn wfn 5183  cfv 5188  (class class class)co 5842  𝑓 cof 6048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050
This theorem is referenced by:  offeq  6063  dvaddxxbr  13305  dvmulxxbr  13306
  Copyright terms: Public domain W3C validator