ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofvalg GIF version

Theorem ofvalg 5991
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
ofval.6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
ofval.7 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
ofval.8 ((𝜑𝑋𝑆) → (𝐶𝑅𝐷) ∈ 𝑈)
Assertion
Ref Expression
ofvalg ((𝜑𝑋𝑆) → ((𝐹𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))

Proof of Theorem ofvalg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . 5 (𝜑𝐹 Fn 𝐴)
2 offval.2 . . . . 5 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . . . 5 (𝜑𝐴𝑉)
4 offval.4 . . . . 5 (𝜑𝐵𝑊)
5 offval.5 . . . . 5 (𝐴𝐵) = 𝑆
6 eqidd 2140 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2140 . . . . 5 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7offval 5989 . . . 4 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
98fveq1d 5423 . . 3 (𝜑 → ((𝐹𝑓 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
109adantr 274 . 2 ((𝜑𝑋𝑆) → ((𝐹𝑓 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
11 eqid 2139 . . 3 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
12 fveq2 5421 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
13 fveq2 5421 . . . 4 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1412, 13oveq12d 5792 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥)𝑅(𝐺𝑥)) = ((𝐹𝑋)𝑅(𝐺𝑋)))
15 simpr 109 . . 3 ((𝜑𝑋𝑆) → 𝑋𝑆)
16 inss1 3296 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐴
175, 16eqsstrri 3130 . . . . . . 7 𝑆𝐴
1817sseli 3093 . . . . . 6 (𝑋𝑆𝑋𝐴)
19 ofval.6 . . . . . 6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
2018, 19sylan2 284 . . . . 5 ((𝜑𝑋𝑆) → (𝐹𝑋) = 𝐶)
21 inss2 3297 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐵
225, 21eqsstrri 3130 . . . . . . 7 𝑆𝐵
2322sseli 3093 . . . . . 6 (𝑋𝑆𝑋𝐵)
24 ofval.7 . . . . . 6 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
2523, 24sylan2 284 . . . . 5 ((𝜑𝑋𝑆) → (𝐺𝑋) = 𝐷)
2620, 25oveq12d 5792 . . . 4 ((𝜑𝑋𝑆) → ((𝐹𝑋)𝑅(𝐺𝑋)) = (𝐶𝑅𝐷))
27 ofval.8 . . . 4 ((𝜑𝑋𝑆) → (𝐶𝑅𝐷) ∈ 𝑈)
2826, 27eqeltrd 2216 . . 3 ((𝜑𝑋𝑆) → ((𝐹𝑋)𝑅(𝐺𝑋)) ∈ 𝑈)
2911, 14, 15, 28fvmptd3 5514 . 2 ((𝜑𝑋𝑆) → ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
3010, 29, 263eqtrd 2176 1 ((𝜑𝑋𝑆) → ((𝐹𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  cin 3070  cmpt 3989   Fn wfn 5118  cfv 5123  (class class class)co 5774  𝑓 cof 5980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982
This theorem is referenced by:  offeq  5995  dvaddxxbr  12834  dvmulxxbr  12835
  Copyright terms: Public domain W3C validator