ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofvalg GIF version

Theorem ofvalg 6226
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
ofval.6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
ofval.7 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
ofval.8 ((𝜑𝑋𝑆) → (𝐶𝑅𝐷) ∈ 𝑈)
Assertion
Ref Expression
ofvalg ((𝜑𝑋𝑆) → ((𝐹𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))

Proof of Theorem ofvalg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . 5 (𝜑𝐹 Fn 𝐴)
2 offval.2 . . . . 5 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . . . 5 (𝜑𝐴𝑉)
4 offval.4 . . . . 5 (𝜑𝐵𝑊)
5 offval.5 . . . . 5 (𝐴𝐵) = 𝑆
6 eqidd 2230 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2230 . . . . 5 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7offval 6224 . . . 4 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
98fveq1d 5628 . . 3 (𝜑 → ((𝐹𝑓 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
109adantr 276 . 2 ((𝜑𝑋𝑆) → ((𝐹𝑓 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
11 eqid 2229 . . 3 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
12 fveq2 5626 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
13 fveq2 5626 . . . 4 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1412, 13oveq12d 6018 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥)𝑅(𝐺𝑥)) = ((𝐹𝑋)𝑅(𝐺𝑋)))
15 simpr 110 . . 3 ((𝜑𝑋𝑆) → 𝑋𝑆)
16 inss1 3424 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐴
175, 16eqsstrri 3257 . . . . . . 7 𝑆𝐴
1817sseli 3220 . . . . . 6 (𝑋𝑆𝑋𝐴)
19 ofval.6 . . . . . 6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
2018, 19sylan2 286 . . . . 5 ((𝜑𝑋𝑆) → (𝐹𝑋) = 𝐶)
21 inss2 3425 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐵
225, 21eqsstrri 3257 . . . . . . 7 𝑆𝐵
2322sseli 3220 . . . . . 6 (𝑋𝑆𝑋𝐵)
24 ofval.7 . . . . . 6 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
2523, 24sylan2 286 . . . . 5 ((𝜑𝑋𝑆) → (𝐺𝑋) = 𝐷)
2620, 25oveq12d 6018 . . . 4 ((𝜑𝑋𝑆) → ((𝐹𝑋)𝑅(𝐺𝑋)) = (𝐶𝑅𝐷))
27 ofval.8 . . . 4 ((𝜑𝑋𝑆) → (𝐶𝑅𝐷) ∈ 𝑈)
2826, 27eqeltrd 2306 . . 3 ((𝜑𝑋𝑆) → ((𝐹𝑋)𝑅(𝐺𝑋)) ∈ 𝑈)
2911, 14, 15, 28fvmptd3 5727 . 2 ((𝜑𝑋𝑆) → ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
3010, 29, 263eqtrd 2266 1 ((𝜑𝑋𝑆) → ((𝐹𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cin 3196  cmpt 4144   Fn wfn 5312  cfv 5317  (class class class)co 6000  𝑓 cof 6214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-of 6216
This theorem is referenced by:  offeq  6230  ofc1g  6238  ofc2g  6239  ofnegsub  9105  gsumfzmptfidmadd  13871  mplsubgfilemcl  14657  dvaddxxbr  15369  dvmulxxbr  15370  plyaddlem1  15415
  Copyright terms: Public domain W3C validator