| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofrval | GIF version | ||
| Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
| ofrval.6 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
| ofrval.7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) |
| Ref | Expression |
|---|---|
| ofrval | ⊢ ((𝜑 ∧ 𝐹 ∘𝑟 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offval.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | offval.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | offval.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | offval.5 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 6 | eqidd 2207 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 7 | eqidd 2207 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ofrfval 6185 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
| 9 | 8 | biimpa 296 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∘𝑟 𝑅𝐺) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥)𝑅(𝐺‘𝑥)) |
| 10 | fveq2 5594 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 11 | fveq2 5594 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
| 12 | 10, 11 | breq12d 4067 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥)𝑅(𝐺‘𝑥) ↔ (𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 13 | 12 | rspccv 2878 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 (𝐹‘𝑥)𝑅(𝐺‘𝑥) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 14 | 9, 13 | syl 14 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∘𝑟 𝑅𝐺) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 15 | 14 | 3impia 1203 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∘𝑟 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋)𝑅(𝐺‘𝑋)) |
| 16 | simp1 1000 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∘𝑟 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝜑) | |
| 17 | inss1 3397 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 18 | 5, 17 | eqsstrri 3230 | . . . 4 ⊢ 𝑆 ⊆ 𝐴 |
| 19 | simp3 1002 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∘𝑟 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 20 | 18, 19 | sselid 3195 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∘𝑟 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐴) |
| 21 | ofrval.6 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
| 22 | 16, 20, 21 | syl2anc 411 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∘𝑟 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) = 𝐶) |
| 23 | inss2 3398 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 24 | 5, 23 | eqsstrri 3230 | . . . 4 ⊢ 𝑆 ⊆ 𝐵 |
| 25 | 24, 19 | sselid 3195 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∘𝑟 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
| 26 | ofrval.7 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) | |
| 27 | 16, 25, 26 | syl2anc 411 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∘𝑟 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑋) = 𝐷) |
| 28 | 15, 22, 27 | 3brtr3d 4085 | 1 ⊢ ((𝜑 ∧ 𝐹 ∘𝑟 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝐶𝑅𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∩ cin 3169 class class class wbr 4054 Fn wfn 5280 ‘cfv 5285 ∘𝑟 cofr 6175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ofr 6177 |
| This theorem is referenced by: psrbaglesuppg 14519 |
| Copyright terms: Public domain | W3C validator |