ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofrval GIF version

Theorem ofrval 6146
Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
ofrval.6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
ofrval.7 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
Assertion
Ref Expression
ofrval ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝐶𝑅𝐷)

Proof of Theorem ofrval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . . 6 (𝜑𝐹 Fn 𝐴)
2 offval.2 . . . . . 6 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . . . . 6 (𝜑𝐴𝑉)
4 offval.4 . . . . . 6 (𝜑𝐵𝑊)
5 offval.5 . . . . . 6 (𝐴𝐵) = 𝑆
6 eqidd 2197 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2197 . . . . . 6 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7ofrfval 6144 . . . . 5 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥𝑆 (𝐹𝑥)𝑅(𝐺𝑥)))
98biimpa 296 . . . 4 ((𝜑𝐹𝑟 𝑅𝐺) → ∀𝑥𝑆 (𝐹𝑥)𝑅(𝐺𝑥))
10 fveq2 5558 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
11 fveq2 5558 . . . . . 6 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1210, 11breq12d 4046 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥)𝑅(𝐺𝑥) ↔ (𝐹𝑋)𝑅(𝐺𝑋)))
1312rspccv 2865 . . . 4 (∀𝑥𝑆 (𝐹𝑥)𝑅(𝐺𝑥) → (𝑋𝑆 → (𝐹𝑋)𝑅(𝐺𝑋)))
149, 13syl 14 . . 3 ((𝜑𝐹𝑟 𝑅𝐺) → (𝑋𝑆 → (𝐹𝑋)𝑅(𝐺𝑋)))
15143impia 1202 . 2 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → (𝐹𝑋)𝑅(𝐺𝑋))
16 simp1 999 . . 3 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝜑)
17 inss1 3383 . . . . 5 (𝐴𝐵) ⊆ 𝐴
185, 17eqsstrri 3216 . . . 4 𝑆𝐴
19 simp3 1001 . . . 4 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝑋𝑆)
2018, 19sselid 3181 . . 3 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝑋𝐴)
21 ofrval.6 . . 3 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
2216, 20, 21syl2anc 411 . 2 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → (𝐹𝑋) = 𝐶)
23 inss2 3384 . . . . 5 (𝐴𝐵) ⊆ 𝐵
245, 23eqsstrri 3216 . . . 4 𝑆𝐵
2524, 19sselid 3181 . . 3 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝑋𝐵)
26 ofrval.7 . . 3 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
2716, 25, 26syl2anc 411 . 2 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → (𝐺𝑋) = 𝐷)
2815, 22, 273brtr3d 4064 1 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝐶𝑅𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wral 2475  cin 3156   class class class wbr 4033   Fn wfn 5253  cfv 5258  𝑟 cofr 6134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ofr 6136
This theorem is referenced by:  psrbaglesuppg  14226
  Copyright terms: Public domain W3C validator