| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfvex | GIF version | ||
| Description: The value of a function exists. A special case of Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| funfvex | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5266 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
| 2 | funfveu 5571 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦) | |
| 3 | euiotaex 5235 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (℩𝑦𝐴𝐹𝑦) ∈ V) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (℩𝑦𝐴𝐹𝑦) ∈ V) |
| 5 | 1, 4 | eqeltrid 2283 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃!weu 2045 ∈ wcel 2167 Vcvv 2763 class class class wbr 4033 dom cdm 4663 ℩cio 5217 Fun wfun 5252 ‘cfv 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 |
| This theorem is referenced by: fnbrfvb 5601 fvelrnb 5608 funimass4 5611 fvelimab 5617 fniinfv 5619 funfvdm 5624 dmfco 5629 fvco2 5630 eqfnfv 5659 fndmdif 5667 fndmin 5669 fvimacnvi 5676 fvimacnv 5677 funconstss 5680 fniniseg 5682 fniniseg2 5684 fnniniseg2 5685 rexsupp 5686 fvelrn 5693 rexrn 5699 ralrn 5700 dff3im 5707 fmptco 5728 fsn2 5736 fnressn 5748 resfunexg 5783 eufnfv 5793 funfvima3 5796 rexima 5801 ralima 5802 fniunfv 5809 elunirn 5813 dff13 5815 foeqcnvco 5837 f1eqcocnv 5838 isocnv2 5859 isoini 5865 f1oiso 5873 fnovex 5955 suppssof1 6153 offveqb 6155 1stexg 6225 2ndexg 6226 smoiso 6360 rdgtfr 6432 rdgruledefgg 6433 rdgivallem 6439 frectfr 6458 frecrdg 6466 en1 6858 fundmen 6865 fnfi 7002 ordiso2 7101 cc2lem 7333 climshft2 11471 slotex 12705 strsetsid 12711 ressbas2d 12746 ressbasid 12748 strressid 12749 ressval3d 12750 prdsex 12940 imasex 12948 imasival 12949 imasbas 12950 imasplusg 12951 imasmulr 12952 imasaddfn 12960 imasaddval 12961 imasaddf 12962 imasmulfn 12963 imasmulval 12964 imasmulf 12965 qusval 12966 qusex 12968 qusaddvallemg 12976 qusaddflemg 12977 qusaddval 12978 qusaddf 12979 qusmulval 12980 qusmulf 12981 xpsfeq 12988 xpsval 12995 ismgm 13000 plusffvalg 13005 grpidvalg 13016 fn0g 13018 fngsum 13031 igsumvalx 13032 gsumfzval 13034 gsumress 13038 gsum0g 13039 issgrp 13046 ismnddef 13059 issubmnd 13083 ress0g 13084 ismhm 13093 mhmex 13094 issubm 13104 0mhm 13118 grppropstrg 13151 grpinvfvalg 13174 grpinvval 13175 grpinvfng 13176 grpsubfvalg 13177 grpsubval 13178 grpressid 13193 grplactfval 13233 qusgrp2 13243 mulgfvalg 13251 mulgval 13252 mulgex 13253 mulgfng 13254 issubg 13303 subgex 13306 issubg2m 13319 isnsg 13332 releqgg 13350 eqgex 13351 eqgfval 13352 eqgen 13357 isghm 13373 ablressid 13465 mgptopng 13485 isrng 13490 rngressid 13510 qusrng 13514 dfur2g 13518 issrg 13521 isring 13556 ringidss 13585 ringressid 13619 qusring2 13622 reldvdsrsrg 13648 dvdsrvald 13649 dvdsrex 13654 unitgrp 13672 unitabl 13673 invrfvald 13678 unitlinv 13682 unitrinv 13683 dvrfvald 13689 rdivmuldivd 13700 invrpropdg 13705 dfrhm2 13710 rhmex 13713 rhmunitinv 13734 isnzr2 13740 issubrng 13755 issubrg 13777 subrgugrp 13796 rrgval 13818 isdomn 13825 aprval 13838 aprap 13842 islmod 13847 scaffvalg 13862 rmodislmod 13907 lssex 13910 lsssetm 13912 islssm 13913 islssmg 13914 islss3 13935 lspfval 13944 lspval 13946 lspcl 13947 lspex 13951 sraval 13993 sralemg 13994 srascag 13998 sravscag 13999 sraipg 14000 sraex 14002 rlmsubg 14014 rlmvnegg 14021 ixpsnbasval 14022 lidlex 14029 rspex 14030 lidlss 14032 lidlrsppropdg 14051 qusrhm 14084 mopnset 14108 psrval 14220 fnpsr 14221 psrbasg 14227 psrelbas 14228 psrplusgg 14230 psraddcl 14232 |
| Copyright terms: Public domain | W3C validator |