Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funfvex | GIF version |
Description: The value of a function exists. A special case of Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
funfvex | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5196 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
2 | funfveu 5499 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦) | |
3 | euiotaex 5169 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (℩𝑦𝐴𝐹𝑦) ∈ V) | |
4 | 2, 3 | syl 14 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (℩𝑦𝐴𝐹𝑦) ∈ V) |
5 | 1, 4 | eqeltrid 2253 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃!weu 2014 ∈ wcel 2136 Vcvv 2726 class class class wbr 3982 dom cdm 4604 ℩cio 5151 Fun wfun 5182 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 |
This theorem is referenced by: fnbrfvb 5527 fvelrnb 5534 funimass4 5537 fvelimab 5542 fniinfv 5544 funfvdm 5549 dmfco 5554 fvco2 5555 eqfnfv 5583 fndmdif 5590 fndmin 5592 fvimacnvi 5599 fvimacnv 5600 funconstss 5603 fniniseg 5605 fniniseg2 5607 fnniniseg2 5608 rexsupp 5609 fvelrn 5616 rexrn 5622 ralrn 5623 dff3im 5630 fmptco 5651 fsn2 5659 fnressn 5671 resfunexg 5706 eufnfv 5715 funfvima3 5718 rexima 5723 ralima 5724 fniunfv 5730 elunirn 5734 dff13 5736 foeqcnvco 5758 f1eqcocnv 5759 isocnv2 5780 isoini 5786 f1oiso 5794 fnovex 5875 suppssof1 6067 offveqb 6069 1stexg 6135 2ndexg 6136 smoiso 6270 rdgtfr 6342 rdgruledefgg 6343 rdgivallem 6349 frectfr 6368 frecrdg 6376 en1 6765 fundmen 6772 fnfi 6902 ordiso2 7000 cc2lem 7207 climshft2 11247 slotex 12421 strsetsid 12427 ismgm 12588 plusffvalg 12593 grpidvalg 12604 fn0g 12606 |
Copyright terms: Public domain | W3C validator |