| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfvex | GIF version | ||
| Description: The value of a function exists. A special case of Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| funfvex | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5302 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
| 2 | funfveu 5616 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦) | |
| 3 | euiotaex 5271 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (℩𝑦𝐴𝐹𝑦) ∈ V) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (℩𝑦𝐴𝐹𝑦) ∈ V) |
| 5 | 1, 4 | eqeltrid 2296 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃!weu 2057 ∈ wcel 2180 Vcvv 2779 class class class wbr 4062 dom cdm 4696 ℩cio 5252 Fun wfun 5288 ‘cfv 5294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 |
| This theorem is referenced by: fnbrfvb 5646 fvelrnb 5654 funimass4 5657 fvelimab 5663 fniinfv 5665 funfvdm 5670 dmfco 5675 fvco2 5676 eqfnfv 5705 fndmdif 5713 fndmin 5715 fvimacnvi 5722 fvimacnv 5723 funconstss 5726 fniniseg 5728 fniniseg2 5730 fnniniseg2 5731 rexsupp 5732 fvelrn 5739 rexrn 5745 ralrn 5746 dff3im 5753 fmptco 5774 fsn2 5782 funiun 5789 fnressn 5798 resfunexg 5833 eufnfv 5843 funfvima3 5846 rexima 5851 ralima 5852 fniunfv 5859 elunirn 5863 dff13 5865 foeqcnvco 5887 f1eqcocnv 5888 isocnv2 5909 isoini 5915 f1oiso 5923 fnovex 6007 suppssof1 6206 offveqb 6208 1stexg 6283 2ndexg 6284 smoiso 6418 rdgtfr 6490 rdgruledefgg 6491 rdgivallem 6497 frectfr 6516 frecrdg 6524 en1 6921 fundmen 6929 fnfi 7071 ordiso2 7170 cc2lem 7420 climshft2 11783 slotex 13025 strsetsid 13031 ressbas2d 13067 ressbasid 13069 strressid 13070 ressval3d 13071 prdsex 13268 prdsval 13272 prdsbaslemss 13273 prdsbas 13275 prdsplusg 13276 prdsmulr 13277 pwsbas 13291 pwselbasb 13292 pwssnf1o 13297 imasex 13304 imasival 13305 imasbas 13306 imasplusg 13307 imasmulr 13308 imasaddfn 13316 imasaddval 13317 imasaddf 13318 imasmulfn 13319 imasmulval 13320 imasmulf 13321 qusval 13322 qusex 13324 qusaddvallemg 13332 qusaddflemg 13333 qusaddval 13334 qusaddf 13335 qusmulval 13336 qusmulf 13337 xpsfeq 13344 xpsval 13351 ismgm 13356 plusffvalg 13361 grpidvalg 13372 fn0g 13374 fngsum 13387 igsumvalx 13388 gsumfzval 13390 gsumress 13394 gsum0g 13395 issgrp 13402 ismnddef 13417 issubmnd 13441 ress0g 13442 ismhm 13460 mhmex 13461 issubm 13471 0mhm 13485 grppropstrg 13518 grpinvfvalg 13541 grpinvval 13542 grpinvfng 13543 grpsubfvalg 13544 grpsubval 13545 grpressid 13560 grplactfval 13600 qusgrp2 13616 mulgfvalg 13624 mulgval 13625 mulgex 13626 mulgfng 13627 issubg 13676 subgex 13679 issubg2m 13692 isnsg 13705 releqgg 13723 eqgex 13724 eqgfval 13725 eqgen 13730 isghm 13746 ablressid 13838 mgptopng 13858 isrng 13863 rngressid 13883 qusrng 13887 dfur2g 13891 issrg 13894 isring 13929 ringidss 13958 ringressid 13992 qusring2 13995 reldvdsrsrg 14021 dvdsrvald 14022 dvdsrex 14027 unitgrp 14045 unitabl 14046 invrfvald 14051 unitlinv 14055 unitrinv 14056 dvrfvald 14062 rdivmuldivd 14073 invrpropdg 14078 dfrhm2 14083 rhmex 14086 rhmunitinv 14107 isnzr2 14113 issubrng 14128 issubrg 14150 subrgugrp 14169 rrgval 14191 isdomn 14198 aprval 14211 aprap 14215 islmod 14220 scaffvalg 14235 rmodislmod 14280 lssex 14283 lsssetm 14285 islssm 14286 islssmg 14287 islss3 14308 lspfval 14317 lspval 14319 lspcl 14320 lspex 14324 sraval 14366 sralemg 14367 srascag 14371 sravscag 14372 sraipg 14373 sraex 14375 rlmsubg 14387 rlmvnegg 14394 ixpsnbasval 14395 lidlex 14402 rspex 14403 lidlss 14405 lidlrsppropdg 14424 qusrhm 14457 mopnset 14481 psrval 14595 fnpsr 14596 psrbasg 14603 psrelbas 14604 psrplusgg 14607 psraddcl 14609 psr0cl 14610 psrnegcl 14612 psr1clfi 14617 mplvalcoe 14619 fnmpl 14622 mplplusgg 14632 vtxvalg 15782 vtxex 15784 |
| Copyright terms: Public domain | W3C validator |