| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfvex | GIF version | ||
| Description: The value of a function exists. A special case of Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| funfvex | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5267 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
| 2 | funfveu 5574 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦) | |
| 3 | euiotaex 5236 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (℩𝑦𝐴𝐹𝑦) ∈ V) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (℩𝑦𝐴𝐹𝑦) ∈ V) |
| 5 | 1, 4 | eqeltrid 2283 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃!weu 2045 ∈ wcel 2167 Vcvv 2763 class class class wbr 4034 dom cdm 4664 ℩cio 5218 Fun wfun 5253 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 |
| This theorem is referenced by: fnbrfvb 5604 fvelrnb 5611 funimass4 5614 fvelimab 5620 fniinfv 5622 funfvdm 5627 dmfco 5632 fvco2 5633 eqfnfv 5662 fndmdif 5670 fndmin 5672 fvimacnvi 5679 fvimacnv 5680 funconstss 5683 fniniseg 5685 fniniseg2 5687 fnniniseg2 5688 rexsupp 5689 fvelrn 5696 rexrn 5702 ralrn 5703 dff3im 5710 fmptco 5731 fsn2 5739 fnressn 5751 resfunexg 5786 eufnfv 5796 funfvima3 5799 rexima 5804 ralima 5805 fniunfv 5812 elunirn 5816 dff13 5818 foeqcnvco 5840 f1eqcocnv 5841 isocnv2 5862 isoini 5868 f1oiso 5876 fnovex 5958 suppssof1 6157 offveqb 6159 1stexg 6234 2ndexg 6235 smoiso 6369 rdgtfr 6441 rdgruledefgg 6442 rdgivallem 6448 frectfr 6467 frecrdg 6475 en1 6867 fundmen 6874 fnfi 7011 ordiso2 7110 cc2lem 7349 climshft2 11488 slotex 12730 strsetsid 12736 ressbas2d 12771 ressbasid 12773 strressid 12774 ressval3d 12775 prdsex 12971 prdsval 12975 prdsbaslemss 12976 prdsbas 12978 prdsplusg 12979 prdsmulr 12980 pwsbas 12994 pwselbasb 12995 pwssnf1o 13000 imasex 13007 imasival 13008 imasbas 13009 imasplusg 13010 imasmulr 13011 imasaddfn 13019 imasaddval 13020 imasaddf 13021 imasmulfn 13022 imasmulval 13023 imasmulf 13024 qusval 13025 qusex 13027 qusaddvallemg 13035 qusaddflemg 13036 qusaddval 13037 qusaddf 13038 qusmulval 13039 qusmulf 13040 xpsfeq 13047 xpsval 13054 ismgm 13059 plusffvalg 13064 grpidvalg 13075 fn0g 13077 fngsum 13090 igsumvalx 13091 gsumfzval 13093 gsumress 13097 gsum0g 13098 issgrp 13105 ismnddef 13120 issubmnd 13144 ress0g 13145 ismhm 13163 mhmex 13164 issubm 13174 0mhm 13188 grppropstrg 13221 grpinvfvalg 13244 grpinvval 13245 grpinvfng 13246 grpsubfvalg 13247 grpsubval 13248 grpressid 13263 grplactfval 13303 qusgrp2 13319 mulgfvalg 13327 mulgval 13328 mulgex 13329 mulgfng 13330 issubg 13379 subgex 13382 issubg2m 13395 isnsg 13408 releqgg 13426 eqgex 13427 eqgfval 13428 eqgen 13433 isghm 13449 ablressid 13541 mgptopng 13561 isrng 13566 rngressid 13586 qusrng 13590 dfur2g 13594 issrg 13597 isring 13632 ringidss 13661 ringressid 13695 qusring2 13698 reldvdsrsrg 13724 dvdsrvald 13725 dvdsrex 13730 unitgrp 13748 unitabl 13749 invrfvald 13754 unitlinv 13758 unitrinv 13759 dvrfvald 13765 rdivmuldivd 13776 invrpropdg 13781 dfrhm2 13786 rhmex 13789 rhmunitinv 13810 isnzr2 13816 issubrng 13831 issubrg 13853 subrgugrp 13872 rrgval 13894 isdomn 13901 aprval 13914 aprap 13918 islmod 13923 scaffvalg 13938 rmodislmod 13983 lssex 13986 lsssetm 13988 islssm 13989 islssmg 13990 islss3 14011 lspfval 14020 lspval 14022 lspcl 14023 lspex 14027 sraval 14069 sralemg 14070 srascag 14074 sravscag 14075 sraipg 14076 sraex 14078 rlmsubg 14090 rlmvnegg 14097 ixpsnbasval 14098 lidlex 14105 rspex 14106 lidlss 14108 lidlrsppropdg 14127 qusrhm 14160 mopnset 14184 psrval 14296 fnpsr 14297 psrbasg 14303 psrelbas 14304 psrplusgg 14306 psraddcl 14308 psr0cl 14309 psrnegcl 14311 psr1clfi 14316 |
| Copyright terms: Public domain | W3C validator |