| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfvex | GIF version | ||
| Description: The value of a function exists. A special case of Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| funfvex | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5284 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
| 2 | funfveu 5596 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦) | |
| 3 | euiotaex 5253 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (℩𝑦𝐴𝐹𝑦) ∈ V) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (℩𝑦𝐴𝐹𝑦) ∈ V) |
| 5 | 1, 4 | eqeltrid 2293 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃!weu 2055 ∈ wcel 2177 Vcvv 2773 class class class wbr 4047 dom cdm 4679 ℩cio 5235 Fun wfun 5270 ‘cfv 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 |
| This theorem is referenced by: fnbrfvb 5626 fvelrnb 5633 funimass4 5636 fvelimab 5642 fniinfv 5644 funfvdm 5649 dmfco 5654 fvco2 5655 eqfnfv 5684 fndmdif 5692 fndmin 5694 fvimacnvi 5701 fvimacnv 5702 funconstss 5705 fniniseg 5707 fniniseg2 5709 fnniniseg2 5710 rexsupp 5711 fvelrn 5718 rexrn 5724 ralrn 5725 dff3im 5732 fmptco 5753 fsn2 5761 funiun 5768 fnressn 5777 resfunexg 5812 eufnfv 5822 funfvima3 5825 rexima 5830 ralima 5831 fniunfv 5838 elunirn 5842 dff13 5844 foeqcnvco 5866 f1eqcocnv 5867 isocnv2 5888 isoini 5894 f1oiso 5902 fnovex 5984 suppssof1 6183 offveqb 6185 1stexg 6260 2ndexg 6261 smoiso 6395 rdgtfr 6467 rdgruledefgg 6468 rdgivallem 6474 frectfr 6493 frecrdg 6501 en1 6898 fundmen 6905 fnfi 7045 ordiso2 7144 cc2lem 7385 climshft2 11661 slotex 12903 strsetsid 12909 ressbas2d 12944 ressbasid 12946 strressid 12947 ressval3d 12948 prdsex 13145 prdsval 13149 prdsbaslemss 13150 prdsbas 13152 prdsplusg 13153 prdsmulr 13154 pwsbas 13168 pwselbasb 13169 pwssnf1o 13174 imasex 13181 imasival 13182 imasbas 13183 imasplusg 13184 imasmulr 13185 imasaddfn 13193 imasaddval 13194 imasaddf 13195 imasmulfn 13196 imasmulval 13197 imasmulf 13198 qusval 13199 qusex 13201 qusaddvallemg 13209 qusaddflemg 13210 qusaddval 13211 qusaddf 13212 qusmulval 13213 qusmulf 13214 xpsfeq 13221 xpsval 13228 ismgm 13233 plusffvalg 13238 grpidvalg 13249 fn0g 13251 fngsum 13264 igsumvalx 13265 gsumfzval 13267 gsumress 13271 gsum0g 13272 issgrp 13279 ismnddef 13294 issubmnd 13318 ress0g 13319 ismhm 13337 mhmex 13338 issubm 13348 0mhm 13362 grppropstrg 13395 grpinvfvalg 13418 grpinvval 13419 grpinvfng 13420 grpsubfvalg 13421 grpsubval 13422 grpressid 13437 grplactfval 13477 qusgrp2 13493 mulgfvalg 13501 mulgval 13502 mulgex 13503 mulgfng 13504 issubg 13553 subgex 13556 issubg2m 13569 isnsg 13582 releqgg 13600 eqgex 13601 eqgfval 13602 eqgen 13607 isghm 13623 ablressid 13715 mgptopng 13735 isrng 13740 rngressid 13760 qusrng 13764 dfur2g 13768 issrg 13771 isring 13806 ringidss 13835 ringressid 13869 qusring2 13872 reldvdsrsrg 13898 dvdsrvald 13899 dvdsrex 13904 unitgrp 13922 unitabl 13923 invrfvald 13928 unitlinv 13932 unitrinv 13933 dvrfvald 13939 rdivmuldivd 13950 invrpropdg 13955 dfrhm2 13960 rhmex 13963 rhmunitinv 13984 isnzr2 13990 issubrng 14005 issubrg 14027 subrgugrp 14046 rrgval 14068 isdomn 14075 aprval 14088 aprap 14092 islmod 14097 scaffvalg 14112 rmodislmod 14157 lssex 14160 lsssetm 14162 islssm 14163 islssmg 14164 islss3 14185 lspfval 14194 lspval 14196 lspcl 14197 lspex 14201 sraval 14243 sralemg 14244 srascag 14248 sravscag 14249 sraipg 14250 sraex 14252 rlmsubg 14264 rlmvnegg 14271 ixpsnbasval 14272 lidlex 14279 rspex 14280 lidlss 14282 lidlrsppropdg 14301 qusrhm 14334 mopnset 14358 psrval 14472 fnpsr 14473 psrbasg 14480 psrelbas 14481 psrplusgg 14484 psraddcl 14486 psr0cl 14487 psrnegcl 14489 psr1clfi 14494 mplvalcoe 14496 fnmpl 14499 mplplusgg 14509 vtxvalg 15659 vtxex 15661 |
| Copyright terms: Public domain | W3C validator |