Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funfvex | GIF version |
Description: The value of a function exists. A special case of Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
funfvex | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5206 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
2 | funfveu 5509 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦) | |
3 | euiotaex 5176 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (℩𝑦𝐴𝐹𝑦) ∈ V) | |
4 | 2, 3 | syl 14 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (℩𝑦𝐴𝐹𝑦) ∈ V) |
5 | 1, 4 | eqeltrid 2257 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃!weu 2019 ∈ wcel 2141 Vcvv 2730 class class class wbr 3989 dom cdm 4611 ℩cio 5158 Fun wfun 5192 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 |
This theorem is referenced by: fnbrfvb 5537 fvelrnb 5544 funimass4 5547 fvelimab 5552 fniinfv 5554 funfvdm 5559 dmfco 5564 fvco2 5565 eqfnfv 5593 fndmdif 5601 fndmin 5603 fvimacnvi 5610 fvimacnv 5611 funconstss 5614 fniniseg 5616 fniniseg2 5618 fnniniseg2 5619 rexsupp 5620 fvelrn 5627 rexrn 5633 ralrn 5634 dff3im 5641 fmptco 5662 fsn2 5670 fnressn 5682 resfunexg 5717 eufnfv 5726 funfvima3 5729 rexima 5734 ralima 5735 fniunfv 5741 elunirn 5745 dff13 5747 foeqcnvco 5769 f1eqcocnv 5770 isocnv2 5791 isoini 5797 f1oiso 5805 fnovex 5886 suppssof1 6078 offveqb 6080 1stexg 6146 2ndexg 6147 smoiso 6281 rdgtfr 6353 rdgruledefgg 6354 rdgivallem 6360 frectfr 6379 frecrdg 6387 en1 6777 fundmen 6784 fnfi 6914 ordiso2 7012 cc2lem 7228 climshft2 11269 slotex 12443 strsetsid 12449 ismgm 12611 plusffvalg 12616 grpidvalg 12627 fn0g 12629 issgrp 12644 ismnddef 12654 ismhm 12685 issubm 12695 0mhm 12704 grpinvfvalg 12745 grpinvval 12746 grpinvfng 12747 grpsubfvalg 12748 grpsubval 12749 |
Copyright terms: Public domain | W3C validator |