| Step | Hyp | Ref
| Expression |
| 1 | | df1o2 6505 |
. . . . 5
⊢
1o = {∅} |
| 2 | 1 | breq2i 4051 |
. . . 4
⊢ (𝐴 ≈ 1o ↔
𝐴 ≈
{∅}) |
| 3 | | bren 6824 |
. . . 4
⊢ (𝐴 ≈ {∅} ↔
∃𝑓 𝑓:𝐴–1-1-onto→{∅}) |
| 4 | 2, 3 | bitri 184 |
. . 3
⊢ (𝐴 ≈ 1o ↔
∃𝑓 𝑓:𝐴–1-1-onto→{∅}) |
| 5 | | f1ocnv 5529 |
. . . . 5
⊢ (𝑓:𝐴–1-1-onto→{∅} → ◡𝑓:{∅}–1-1-onto→𝐴) |
| 6 | | f1ofo 5523 |
. . . . . . . 8
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓:{∅}–onto→𝐴) |
| 7 | | forn 5495 |
. . . . . . . 8
⊢ (◡𝑓:{∅}–onto→𝐴 → ran ◡𝑓 = 𝐴) |
| 8 | 6, 7 | syl 14 |
. . . . . . 7
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ran ◡𝑓 = 𝐴) |
| 9 | | f1of 5516 |
. . . . . . . . . 10
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓:{∅}⟶𝐴) |
| 10 | | 0ex 4170 |
. . . . . . . . . . . 12
⊢ ∅
∈ V |
| 11 | 10 | fsn2 5748 |
. . . . . . . . . . 11
⊢ (◡𝑓:{∅}⟶𝐴 ↔ ((◡𝑓‘∅) ∈ 𝐴 ∧ ◡𝑓 = {〈∅, (◡𝑓‘∅)〉})) |
| 12 | 11 | simprbi 275 |
. . . . . . . . . 10
⊢ (◡𝑓:{∅}⟶𝐴 → ◡𝑓 = {〈∅, (◡𝑓‘∅)〉}) |
| 13 | 9, 12 | syl 14 |
. . . . . . . . 9
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓 = {〈∅, (◡𝑓‘∅)〉}) |
| 14 | 13 | rneqd 4905 |
. . . . . . . 8
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ran ◡𝑓 = ran {〈∅, (◡𝑓‘∅)〉}) |
| 15 | 10 | rnsnop 5160 |
. . . . . . . 8
⊢ ran
{〈∅, (◡𝑓‘∅)〉} = {(◡𝑓‘∅)} |
| 16 | 14, 15 | eqtrdi 2253 |
. . . . . . 7
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ran ◡𝑓 = {(◡𝑓‘∅)}) |
| 17 | 8, 16 | eqtr3d 2239 |
. . . . . 6
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → 𝐴 = {(◡𝑓‘∅)}) |
| 18 | 5, 17 | syl 14 |
. . . . 5
⊢ (𝑓:𝐴–1-1-onto→{∅} → 𝐴 = {(◡𝑓‘∅)}) |
| 19 | | f1ofn 5517 |
. . . . . . 7
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓 Fn {∅}) |
| 20 | 10 | snid 3663 |
. . . . . . 7
⊢ ∅
∈ {∅} |
| 21 | | funfvex 5587 |
. . . . . . . 8
⊢ ((Fun
◡𝑓 ∧ ∅ ∈ dom ◡𝑓) → (◡𝑓‘∅) ∈ V) |
| 22 | 21 | funfni 5370 |
. . . . . . 7
⊢ ((◡𝑓 Fn {∅} ∧ ∅ ∈ {∅})
→ (◡𝑓‘∅) ∈ V) |
| 23 | 19, 20, 22 | sylancl 413 |
. . . . . 6
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → (◡𝑓‘∅) ∈ V) |
| 24 | | sneq 3643 |
. . . . . . . 8
⊢ (𝑥 = (◡𝑓‘∅) → {𝑥} = {(◡𝑓‘∅)}) |
| 25 | 24 | eqeq2d 2216 |
. . . . . . 7
⊢ (𝑥 = (◡𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(◡𝑓‘∅)})) |
| 26 | 25 | spcegv 2860 |
. . . . . 6
⊢ ((◡𝑓‘∅) ∈ V → (𝐴 = {(◡𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥})) |
| 27 | 23, 26 | syl 14 |
. . . . 5
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → (𝐴 = {(◡𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥})) |
| 28 | 5, 18, 27 | sylc 62 |
. . . 4
⊢ (𝑓:𝐴–1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥}) |
| 29 | 28 | exlimiv 1620 |
. . 3
⊢
(∃𝑓 𝑓:𝐴–1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥}) |
| 30 | 4, 29 | sylbi 121 |
. 2
⊢ (𝐴 ≈ 1o →
∃𝑥 𝐴 = {𝑥}) |
| 31 | | vex 2774 |
. . . . 5
⊢ 𝑥 ∈ V |
| 32 | 31 | ensn1 6873 |
. . . 4
⊢ {𝑥} ≈
1o |
| 33 | | breq1 4046 |
. . . 4
⊢ (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈
1o)) |
| 34 | 32, 33 | mpbiri 168 |
. . 3
⊢ (𝐴 = {𝑥} → 𝐴 ≈ 1o) |
| 35 | 34 | exlimiv 1620 |
. 2
⊢
(∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o) |
| 36 | 30, 35 | impbii 126 |
1
⊢ (𝐴 ≈ 1o ↔
∃𝑥 𝐴 = {𝑥}) |