| Step | Hyp | Ref
 | Expression | 
| 1 |   | df1o2 6487 | 
. . . . 5
⊢
1o = {∅} | 
| 2 | 1 | breq2i 4041 | 
. . . 4
⊢ (𝐴 ≈ 1o ↔
𝐴 ≈
{∅}) | 
| 3 |   | bren 6806 | 
. . . 4
⊢ (𝐴 ≈ {∅} ↔
∃𝑓 𝑓:𝐴–1-1-onto→{∅}) | 
| 4 | 2, 3 | bitri 184 | 
. . 3
⊢ (𝐴 ≈ 1o ↔
∃𝑓 𝑓:𝐴–1-1-onto→{∅}) | 
| 5 |   | f1ocnv 5517 | 
. . . . 5
⊢ (𝑓:𝐴–1-1-onto→{∅} → ◡𝑓:{∅}–1-1-onto→𝐴) | 
| 6 |   | f1ofo 5511 | 
. . . . . . . 8
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓:{∅}–onto→𝐴) | 
| 7 |   | forn 5483 | 
. . . . . . . 8
⊢ (◡𝑓:{∅}–onto→𝐴 → ran ◡𝑓 = 𝐴) | 
| 8 | 6, 7 | syl 14 | 
. . . . . . 7
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ran ◡𝑓 = 𝐴) | 
| 9 |   | f1of 5504 | 
. . . . . . . . . 10
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓:{∅}⟶𝐴) | 
| 10 |   | 0ex 4160 | 
. . . . . . . . . . . 12
⊢ ∅
∈ V | 
| 11 | 10 | fsn2 5736 | 
. . . . . . . . . . 11
⊢ (◡𝑓:{∅}⟶𝐴 ↔ ((◡𝑓‘∅) ∈ 𝐴 ∧ ◡𝑓 = {〈∅, (◡𝑓‘∅)〉})) | 
| 12 | 11 | simprbi 275 | 
. . . . . . . . . 10
⊢ (◡𝑓:{∅}⟶𝐴 → ◡𝑓 = {〈∅, (◡𝑓‘∅)〉}) | 
| 13 | 9, 12 | syl 14 | 
. . . . . . . . 9
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓 = {〈∅, (◡𝑓‘∅)〉}) | 
| 14 | 13 | rneqd 4895 | 
. . . . . . . 8
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ran ◡𝑓 = ran {〈∅, (◡𝑓‘∅)〉}) | 
| 15 | 10 | rnsnop 5150 | 
. . . . . . . 8
⊢ ran
{〈∅, (◡𝑓‘∅)〉} = {(◡𝑓‘∅)} | 
| 16 | 14, 15 | eqtrdi 2245 | 
. . . . . . 7
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ran ◡𝑓 = {(◡𝑓‘∅)}) | 
| 17 | 8, 16 | eqtr3d 2231 | 
. . . . . 6
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → 𝐴 = {(◡𝑓‘∅)}) | 
| 18 | 5, 17 | syl 14 | 
. . . . 5
⊢ (𝑓:𝐴–1-1-onto→{∅} → 𝐴 = {(◡𝑓‘∅)}) | 
| 19 |   | f1ofn 5505 | 
. . . . . . 7
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓 Fn {∅}) | 
| 20 | 10 | snid 3653 | 
. . . . . . 7
⊢ ∅
∈ {∅} | 
| 21 |   | funfvex 5575 | 
. . . . . . . 8
⊢ ((Fun
◡𝑓 ∧ ∅ ∈ dom ◡𝑓) → (◡𝑓‘∅) ∈ V) | 
| 22 | 21 | funfni 5358 | 
. . . . . . 7
⊢ ((◡𝑓 Fn {∅} ∧ ∅ ∈ {∅})
→ (◡𝑓‘∅) ∈ V) | 
| 23 | 19, 20, 22 | sylancl 413 | 
. . . . . 6
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → (◡𝑓‘∅) ∈ V) | 
| 24 |   | sneq 3633 | 
. . . . . . . 8
⊢ (𝑥 = (◡𝑓‘∅) → {𝑥} = {(◡𝑓‘∅)}) | 
| 25 | 24 | eqeq2d 2208 | 
. . . . . . 7
⊢ (𝑥 = (◡𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(◡𝑓‘∅)})) | 
| 26 | 25 | spcegv 2852 | 
. . . . . 6
⊢ ((◡𝑓‘∅) ∈ V → (𝐴 = {(◡𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥})) | 
| 27 | 23, 26 | syl 14 | 
. . . . 5
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → (𝐴 = {(◡𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥})) | 
| 28 | 5, 18, 27 | sylc 62 | 
. . . 4
⊢ (𝑓:𝐴–1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥}) | 
| 29 | 28 | exlimiv 1612 | 
. . 3
⊢
(∃𝑓 𝑓:𝐴–1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥}) | 
| 30 | 4, 29 | sylbi 121 | 
. 2
⊢ (𝐴 ≈ 1o →
∃𝑥 𝐴 = {𝑥}) | 
| 31 |   | vex 2766 | 
. . . . 5
⊢ 𝑥 ∈ V | 
| 32 | 31 | ensn1 6855 | 
. . . 4
⊢ {𝑥} ≈
1o | 
| 33 |   | breq1 4036 | 
. . . 4
⊢ (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈
1o)) | 
| 34 | 32, 33 | mpbiri 168 | 
. . 3
⊢ (𝐴 = {𝑥} → 𝐴 ≈ 1o) | 
| 35 | 34 | exlimiv 1612 | 
. 2
⊢
(∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o) | 
| 36 | 30, 35 | impbii 126 | 
1
⊢ (𝐴 ≈ 1o ↔
∃𝑥 𝐴 = {𝑥}) |