ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1 GIF version

Theorem en1 6765
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
en1 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem en1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df1o2 6397 . . . . 5 1o = {∅}
21breq2i 3990 . . . 4 (𝐴 ≈ 1o𝐴 ≈ {∅})
3 bren 6713 . . . 4 (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅})
42, 3bitri 183 . . 3 (𝐴 ≈ 1o ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅})
5 f1ocnv 5445 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝑓:{∅}–1-1-onto𝐴)
6 f1ofo 5439 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}–onto𝐴)
7 forn 5413 . . . . . . . 8 (𝑓:{∅}–onto𝐴 → ran 𝑓 = 𝐴)
86, 7syl 14 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = 𝐴)
9 f1of 5432 . . . . . . . . . 10 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}⟶𝐴)
10 0ex 4109 . . . . . . . . . . . 12 ∅ ∈ V
1110fsn2 5659 . . . . . . . . . . 11 (𝑓:{∅}⟶𝐴 ↔ ((𝑓‘∅) ∈ 𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩}))
1211simprbi 273 . . . . . . . . . 10 (𝑓:{∅}⟶𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
139, 12syl 14 . . . . . . . . 9 (𝑓:{∅}–1-1-onto𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
1413rneqd 4833 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = ran {⟨∅, (𝑓‘∅)⟩})
1510rnsnop 5084 . . . . . . . 8 ran {⟨∅, (𝑓‘∅)⟩} = {(𝑓‘∅)}
1614, 15eqtrdi 2215 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = {(𝑓‘∅)})
178, 16eqtr3d 2200 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴𝐴 = {(𝑓‘∅)})
185, 17syl 14 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝐴 = {(𝑓‘∅)})
19 f1ofn 5433 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴𝑓 Fn {∅})
2010snid 3607 . . . . . . 7 ∅ ∈ {∅}
21 funfvex 5503 . . . . . . . 8 ((Fun 𝑓 ∧ ∅ ∈ dom 𝑓) → (𝑓‘∅) ∈ V)
2221funfni 5288 . . . . . . 7 ((𝑓 Fn {∅} ∧ ∅ ∈ {∅}) → (𝑓‘∅) ∈ V)
2319, 20, 22sylancl 410 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → (𝑓‘∅) ∈ V)
24 sneq 3587 . . . . . . . 8 (𝑥 = (𝑓‘∅) → {𝑥} = {(𝑓‘∅)})
2524eqeq2d 2177 . . . . . . 7 (𝑥 = (𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(𝑓‘∅)}))
2625spcegv 2814 . . . . . 6 ((𝑓‘∅) ∈ V → (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥}))
2723, 26syl 14 . . . . 5 (𝑓:{∅}–1-1-onto𝐴 → (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥}))
285, 18, 27sylc 62 . . . 4 (𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
2928exlimiv 1586 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
304, 29sylbi 120 . 2 (𝐴 ≈ 1o → ∃𝑥 𝐴 = {𝑥})
31 vex 2729 . . . . 5 𝑥 ∈ V
3231ensn1 6762 . . . 4 {𝑥} ≈ 1o
33 breq1 3985 . . . 4 (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈ 1o))
3432, 33mpbiri 167 . . 3 (𝐴 = {𝑥} → 𝐴 ≈ 1o)
3534exlimiv 1586 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o)
3630, 35impbii 125 1 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726  c0 3409  {csn 3576  cop 3579   class class class wbr 3982  ccnv 4603  ran crn 4605   Fn wfn 5183  wf 5184  ontowfo 5186  1-1-ontowf1o 5187  cfv 5188  1oc1o 6377  cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-en 6707
This theorem is referenced by:  en1bg  6766  reuen1  6767  pm54.43  7146
  Copyright terms: Public domain W3C validator