ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1 GIF version

Theorem en1 6853
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
en1 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem en1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df1o2 6482 . . . . 5 1o = {∅}
21breq2i 4037 . . . 4 (𝐴 ≈ 1o𝐴 ≈ {∅})
3 bren 6801 . . . 4 (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅})
42, 3bitri 184 . . 3 (𝐴 ≈ 1o ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅})
5 f1ocnv 5513 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝑓:{∅}–1-1-onto𝐴)
6 f1ofo 5507 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}–onto𝐴)
7 forn 5479 . . . . . . . 8 (𝑓:{∅}–onto𝐴 → ran 𝑓 = 𝐴)
86, 7syl 14 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = 𝐴)
9 f1of 5500 . . . . . . . . . 10 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}⟶𝐴)
10 0ex 4156 . . . . . . . . . . . 12 ∅ ∈ V
1110fsn2 5732 . . . . . . . . . . 11 (𝑓:{∅}⟶𝐴 ↔ ((𝑓‘∅) ∈ 𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩}))
1211simprbi 275 . . . . . . . . . 10 (𝑓:{∅}⟶𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
139, 12syl 14 . . . . . . . . 9 (𝑓:{∅}–1-1-onto𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
1413rneqd 4891 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = ran {⟨∅, (𝑓‘∅)⟩})
1510rnsnop 5146 . . . . . . . 8 ran {⟨∅, (𝑓‘∅)⟩} = {(𝑓‘∅)}
1614, 15eqtrdi 2242 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = {(𝑓‘∅)})
178, 16eqtr3d 2228 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴𝐴 = {(𝑓‘∅)})
185, 17syl 14 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝐴 = {(𝑓‘∅)})
19 f1ofn 5501 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴𝑓 Fn {∅})
2010snid 3649 . . . . . . 7 ∅ ∈ {∅}
21 funfvex 5571 . . . . . . . 8 ((Fun 𝑓 ∧ ∅ ∈ dom 𝑓) → (𝑓‘∅) ∈ V)
2221funfni 5354 . . . . . . 7 ((𝑓 Fn {∅} ∧ ∅ ∈ {∅}) → (𝑓‘∅) ∈ V)
2319, 20, 22sylancl 413 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → (𝑓‘∅) ∈ V)
24 sneq 3629 . . . . . . . 8 (𝑥 = (𝑓‘∅) → {𝑥} = {(𝑓‘∅)})
2524eqeq2d 2205 . . . . . . 7 (𝑥 = (𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(𝑓‘∅)}))
2625spcegv 2848 . . . . . 6 ((𝑓‘∅) ∈ V → (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥}))
2723, 26syl 14 . . . . 5 (𝑓:{∅}–1-1-onto𝐴 → (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥}))
285, 18, 27sylc 62 . . . 4 (𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
2928exlimiv 1609 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
304, 29sylbi 121 . 2 (𝐴 ≈ 1o → ∃𝑥 𝐴 = {𝑥})
31 vex 2763 . . . . 5 𝑥 ∈ V
3231ensn1 6850 . . . 4 {𝑥} ≈ 1o
33 breq1 4032 . . . 4 (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈ 1o))
3432, 33mpbiri 168 . . 3 (𝐴 = {𝑥} → 𝐴 ≈ 1o)
3534exlimiv 1609 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o)
3630, 35impbii 126 1 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760  c0 3446  {csn 3618  cop 3621   class class class wbr 4029  ccnv 4658  ran crn 4660   Fn wfn 5249  wf 5250  ontowfo 5252  1-1-ontowf1o 5253  cfv 5254  1oc1o 6462  cen 6792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1o 6469  df-en 6795
This theorem is referenced by:  en1bg  6854  reuen1  6855  pm54.43  7250
  Copyright terms: Public domain W3C validator