ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1 GIF version

Theorem en1 6795
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
en1 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem en1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df1o2 6426 . . . . 5 1o = {∅}
21breq2i 4010 . . . 4 (𝐴 ≈ 1o𝐴 ≈ {∅})
3 bren 6743 . . . 4 (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅})
42, 3bitri 184 . . 3 (𝐴 ≈ 1o ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅})
5 f1ocnv 5472 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝑓:{∅}–1-1-onto𝐴)
6 f1ofo 5466 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}–onto𝐴)
7 forn 5439 . . . . . . . 8 (𝑓:{∅}–onto𝐴 → ran 𝑓 = 𝐴)
86, 7syl 14 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = 𝐴)
9 f1of 5459 . . . . . . . . . 10 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}⟶𝐴)
10 0ex 4129 . . . . . . . . . . . 12 ∅ ∈ V
1110fsn2 5688 . . . . . . . . . . 11 (𝑓:{∅}⟶𝐴 ↔ ((𝑓‘∅) ∈ 𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩}))
1211simprbi 275 . . . . . . . . . 10 (𝑓:{∅}⟶𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
139, 12syl 14 . . . . . . . . 9 (𝑓:{∅}–1-1-onto𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
1413rneqd 4854 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = ran {⟨∅, (𝑓‘∅)⟩})
1510rnsnop 5107 . . . . . . . 8 ran {⟨∅, (𝑓‘∅)⟩} = {(𝑓‘∅)}
1614, 15eqtrdi 2226 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = {(𝑓‘∅)})
178, 16eqtr3d 2212 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴𝐴 = {(𝑓‘∅)})
185, 17syl 14 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝐴 = {(𝑓‘∅)})
19 f1ofn 5460 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴𝑓 Fn {∅})
2010snid 3623 . . . . . . 7 ∅ ∈ {∅}
21 funfvex 5530 . . . . . . . 8 ((Fun 𝑓 ∧ ∅ ∈ dom 𝑓) → (𝑓‘∅) ∈ V)
2221funfni 5314 . . . . . . 7 ((𝑓 Fn {∅} ∧ ∅ ∈ {∅}) → (𝑓‘∅) ∈ V)
2319, 20, 22sylancl 413 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → (𝑓‘∅) ∈ V)
24 sneq 3603 . . . . . . . 8 (𝑥 = (𝑓‘∅) → {𝑥} = {(𝑓‘∅)})
2524eqeq2d 2189 . . . . . . 7 (𝑥 = (𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(𝑓‘∅)}))
2625spcegv 2825 . . . . . 6 ((𝑓‘∅) ∈ V → (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥}))
2723, 26syl 14 . . . . 5 (𝑓:{∅}–1-1-onto𝐴 → (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥}))
285, 18, 27sylc 62 . . . 4 (𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
2928exlimiv 1598 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
304, 29sylbi 121 . 2 (𝐴 ≈ 1o → ∃𝑥 𝐴 = {𝑥})
31 vex 2740 . . . . 5 𝑥 ∈ V
3231ensn1 6792 . . . 4 {𝑥} ≈ 1o
33 breq1 4005 . . . 4 (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈ 1o))
3432, 33mpbiri 168 . . 3 (𝐴 = {𝑥} → 𝐴 ≈ 1o)
3534exlimiv 1598 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o)
3630, 35impbii 126 1 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wex 1492  wcel 2148  Vcvv 2737  c0 3422  {csn 3592  cop 3595   class class class wbr 4002  ccnv 4624  ran crn 4626   Fn wfn 5209  wf 5210  ontowfo 5212  1-1-ontowf1o 5213  cfv 5214  1oc1o 6406  cen 6734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4003  df-opab 4064  df-id 4292  df-suc 4370  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5176  df-fun 5216  df-fn 5217  df-f 5218  df-f1 5219  df-fo 5220  df-f1o 5221  df-fv 5222  df-1o 6413  df-en 6737
This theorem is referenced by:  en1bg  6796  reuen1  6797  pm54.43  7185
  Copyright terms: Public domain W3C validator