| Step | Hyp | Ref
 | Expression | 
| 1 |   | bren 6806 | 
. . . . . . 7
⊢ (𝐴 ≈ 𝐵 ↔ ∃ℎ ℎ:𝐴–1-1-onto→𝐵) | 
| 2 | 1 | biimpi 120 | 
. . . . . 6
⊢ (𝐴 ≈ 𝐵 → ∃ℎ ℎ:𝐴–1-1-onto→𝐵) | 
| 3 | 2 | ad2antrr 488 | 
. . . . 5
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) → ∃ℎ ℎ:𝐴–1-1-onto→𝐵) | 
| 4 |   | fveq1 5557 | 
. . . . . . . . . 10
⊢ (𝑓 = (𝑔 ∘ ℎ) → (𝑓‘𝑥) = ((𝑔 ∘ ℎ)‘𝑥)) | 
| 5 | 4 | eqeq1d 2205 | 
. . . . . . . . 9
⊢ (𝑓 = (𝑔 ∘ ℎ) → ((𝑓‘𝑥) = ∅ ↔ ((𝑔 ∘ ℎ)‘𝑥) = ∅)) | 
| 6 | 5 | rexbidv 2498 | 
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∘ ℎ) → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = ∅)) | 
| 7 | 4 | eqeq1d 2205 | 
. . . . . . . . 9
⊢ (𝑓 = (𝑔 ∘ ℎ) → ((𝑓‘𝑥) = 1o ↔ ((𝑔 ∘ ℎ)‘𝑥) = 1o)) | 
| 8 | 7 | ralbidv 2497 | 
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∘ ℎ) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o)) | 
| 9 | 6, 8 | orbi12d 794 | 
. . . . . . 7
⊢ (𝑓 = (𝑔 ∘ ℎ) → ((∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ↔ (∃𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o))) | 
| 10 |   | isomnimap 7203 | 
. . . . . . . . 9
⊢ (𝐴 ∈ Omni → (𝐴 ∈ Omni ↔
∀𝑓 ∈
(2o ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | 
| 11 | 10 | ibi 176 | 
. . . . . . . 8
⊢ (𝐴 ∈ Omni →
∀𝑓 ∈
(2o ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | 
| 12 | 11 | ad3antlr 493 | 
. . . . . . 7
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → ∀𝑓 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | 
| 13 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) → 𝑔 ∈ (2o
↑𝑚 𝐵)) | 
| 14 |   | 2onn 6579 | 
. . . . . . . . . . . . 13
⊢
2o ∈ ω | 
| 15 |   | relen 6803 | 
. . . . . . . . . . . . . 14
⊢ Rel
≈ | 
| 16 | 15 | brrelex2i 4707 | 
. . . . . . . . . . . . 13
⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) | 
| 17 |   | elmapg 6720 | 
. . . . . . . . . . . . 13
⊢
((2o ∈ ω ∧ 𝐵 ∈ V) → (𝑔 ∈ (2o
↑𝑚 𝐵) ↔ 𝑔:𝐵⟶2o)) | 
| 18 | 14, 16, 17 | sylancr 414 | 
. . . . . . . . . . . 12
⊢ (𝐴 ≈ 𝐵 → (𝑔 ∈ (2o
↑𝑚 𝐵) ↔ 𝑔:𝐵⟶2o)) | 
| 19 | 18 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) → (𝑔 ∈ (2o
↑𝑚 𝐵) ↔ 𝑔:𝐵⟶2o)) | 
| 20 | 13, 19 | mpbid 147 | 
. . . . . . . . . 10
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) → 𝑔:𝐵⟶2o) | 
| 21 | 20 | adantr 276 | 
. . . . . . . . 9
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → 𝑔:𝐵⟶2o) | 
| 22 |   | f1of 5504 | 
. . . . . . . . . 10
⊢ (ℎ:𝐴–1-1-onto→𝐵 → ℎ:𝐴⟶𝐵) | 
| 23 | 22 | adantl 277 | 
. . . . . . . . 9
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → ℎ:𝐴⟶𝐵) | 
| 24 |   | fco 5423 | 
. . . . . . . . 9
⊢ ((𝑔:𝐵⟶2o ∧ ℎ:𝐴⟶𝐵) → (𝑔 ∘ ℎ):𝐴⟶2o) | 
| 25 | 21, 23, 24 | syl2anc 411 | 
. . . . . . . 8
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (𝑔 ∘ ℎ):𝐴⟶2o) | 
| 26 |   | simpllr 534 | 
. . . . . . . . 9
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → 𝐴 ∈ Omni) | 
| 27 |   | elmapg 6720 | 
. . . . . . . . 9
⊢
((2o ∈ ω ∧ 𝐴 ∈ Omni) → ((𝑔 ∘ ℎ) ∈ (2o
↑𝑚 𝐴) ↔ (𝑔 ∘ ℎ):𝐴⟶2o)) | 
| 28 | 14, 26, 27 | sylancr 414 | 
. . . . . . . 8
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → ((𝑔 ∘ ℎ) ∈ (2o
↑𝑚 𝐴) ↔ (𝑔 ∘ ℎ):𝐴⟶2o)) | 
| 29 | 25, 28 | mpbird 167 | 
. . . . . . 7
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (𝑔 ∘ ℎ) ∈ (2o
↑𝑚 𝐴)) | 
| 30 | 9, 12, 29 | rspcdva 2873 | 
. . . . . 6
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (∃𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o)) | 
| 31 |   | f1ofn 5505 | 
. . . . . . . . . . . 12
⊢ (ℎ:𝐴–1-1-onto→𝐵 → ℎ Fn 𝐴) | 
| 32 | 31 | ad2antlr 489 | 
. . . . . . . . . . 11
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → ℎ Fn 𝐴) | 
| 33 |   | fvco2 5630 | 
. . . . . . . . . . 11
⊢ ((ℎ Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝑔 ∘ ℎ)‘𝑥) = (𝑔‘(ℎ‘𝑥))) | 
| 34 | 32, 33 | sylancom 420 | 
. . . . . . . . . 10
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝑔 ∘ ℎ)‘𝑥) = (𝑔‘(ℎ‘𝑥))) | 
| 35 | 34 | eqeq1d 2205 | 
. . . . . . . . 9
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → (((𝑔 ∘ ℎ)‘𝑥) = ∅ ↔ (𝑔‘(ℎ‘𝑥)) = ∅)) | 
| 36 | 23 | ffvelcdmda 5697 | 
. . . . . . . . . 10
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → (ℎ‘𝑥) ∈ 𝐵) | 
| 37 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (ℎ‘𝑥)) → 𝑦 = (ℎ‘𝑥)) | 
| 38 | 37 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (ℎ‘𝑥)) → (𝑔‘𝑦) = (𝑔‘(ℎ‘𝑥))) | 
| 39 | 38 | eqeq1d 2205 | 
. . . . . . . . . 10
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (ℎ‘𝑥)) → ((𝑔‘𝑦) = ∅ ↔ (𝑔‘(ℎ‘𝑥)) = ∅)) | 
| 40 | 36, 39 | rspcedv 2872 | 
. . . . . . . . 9
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝑔‘(ℎ‘𝑥)) = ∅ → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅)) | 
| 41 | 35, 40 | sylbid 150 | 
. . . . . . . 8
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → (((𝑔 ∘ ℎ)‘𝑥) = ∅ → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅)) | 
| 42 | 41 | rexlimdva 2614 | 
. . . . . . 7
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (∃𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = ∅ → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅)) | 
| 43 | 31 | ad3antlr 493 | 
. . . . . . . . . . 11
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ℎ Fn 𝐴) | 
| 44 |   | f1ocnv 5517 | 
. . . . . . . . . . . . . 14
⊢ (ℎ:𝐴–1-1-onto→𝐵 → ◡ℎ:𝐵–1-1-onto→𝐴) | 
| 45 |   | f1of 5504 | 
. . . . . . . . . . . . . 14
⊢ (◡ℎ:𝐵–1-1-onto→𝐴 → ◡ℎ:𝐵⟶𝐴) | 
| 46 | 44, 45 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (ℎ:𝐴–1-1-onto→𝐵 → ◡ℎ:𝐵⟶𝐴) | 
| 47 | 46 | ad3antlr 493 | 
. . . . . . . . . . . 12
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ◡ℎ:𝐵⟶𝐴) | 
| 48 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | 
| 49 | 47, 48 | ffvelcdmd 5698 | 
. . . . . . . . . . 11
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → (◡ℎ‘𝑦) ∈ 𝐴) | 
| 50 |   | fvco2 5630 | 
. . . . . . . . . . 11
⊢ ((ℎ Fn 𝐴 ∧ (◡ℎ‘𝑦) ∈ 𝐴) → ((𝑔 ∘ ℎ)‘(◡ℎ‘𝑦)) = (𝑔‘(ℎ‘(◡ℎ‘𝑦)))) | 
| 51 | 43, 49, 50 | syl2anc 411 | 
. . . . . . . . . 10
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ((𝑔 ∘ ℎ)‘(◡ℎ‘𝑦)) = (𝑔‘(ℎ‘(◡ℎ‘𝑦)))) | 
| 52 |   | fveq2 5558 | 
. . . . . . . . . . . 12
⊢ (𝑥 = (◡ℎ‘𝑦) → ((𝑔 ∘ ℎ)‘𝑥) = ((𝑔 ∘ ℎ)‘(◡ℎ‘𝑦))) | 
| 53 | 52 | eqeq1d 2205 | 
. . . . . . . . . . 11
⊢ (𝑥 = (◡ℎ‘𝑦) → (((𝑔 ∘ ℎ)‘𝑥) = 1o ↔ ((𝑔 ∘ ℎ)‘(◡ℎ‘𝑦)) = 1o)) | 
| 54 |   | simplr 528 | 
. . . . . . . . . . 11
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) | 
| 55 | 53, 54, 49 | rspcdva 2873 | 
. . . . . . . . . 10
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ((𝑔 ∘ ℎ)‘(◡ℎ‘𝑦)) = 1o) | 
| 56 |   | simpllr 534 | 
. . . . . . . . . . 11
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ℎ:𝐴–1-1-onto→𝐵) | 
| 57 |   | f1ocnvfv2 5825 | 
. . . . . . . . . . . 12
⊢ ((ℎ:𝐴–1-1-onto→𝐵 ∧ 𝑦 ∈ 𝐵) → (ℎ‘(◡ℎ‘𝑦)) = 𝑦) | 
| 58 | 57 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢ ((ℎ:𝐴–1-1-onto→𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑔‘(ℎ‘(◡ℎ‘𝑦))) = (𝑔‘𝑦)) | 
| 59 | 56, 58 | sylancom 420 | 
. . . . . . . . . 10
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → (𝑔‘(ℎ‘(◡ℎ‘𝑦))) = (𝑔‘𝑦)) | 
| 60 | 51, 55, 59 | 3eqtr3rd 2238 | 
. . . . . . . . 9
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → (𝑔‘𝑦) = 1o) | 
| 61 | 60 | ralrimiva 2570 | 
. . . . . . . 8
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) → ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o) | 
| 62 | 61 | ex 115 | 
. . . . . . 7
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o → ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o)) | 
| 63 | 42, 62 | orim12d 787 | 
. . . . . 6
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → ((∃𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) → (∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o))) | 
| 64 | 30, 63 | mpd 13 | 
. . . . 5
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o)) | 
| 65 | 3, 64 | exlimddv 1913 | 
. . . 4
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) → (∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o)) | 
| 66 | 65 | ralrimiva 2570 | 
. . 3
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) → ∀𝑔 ∈ (2o
↑𝑚 𝐵)(∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o)) | 
| 67 |   | isomnimap 7203 | 
. . . . 5
⊢ (𝐵 ∈ V → (𝐵 ∈ Omni ↔
∀𝑔 ∈
(2o ↑𝑚 𝐵)(∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o))) | 
| 68 | 16, 67 | syl 14 | 
. . . 4
⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ Omni ↔ ∀𝑔 ∈ (2o
↑𝑚 𝐵)(∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o))) | 
| 69 | 68 | adantr 276 | 
. . 3
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) → (𝐵 ∈ Omni ↔ ∀𝑔 ∈ (2o
↑𝑚 𝐵)(∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o))) | 
| 70 | 66, 69 | mpbird 167 | 
. 2
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) → 𝐵 ∈ Omni) | 
| 71 | 70 | ex 115 | 
1
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Omni → 𝐵 ∈ Omni)) |