Step | Hyp | Ref
| Expression |
1 | | bren 6725 |
. . . . . . 7
⊢ (𝐴 ≈ 𝐵 ↔ ∃ℎ ℎ:𝐴–1-1-onto→𝐵) |
2 | 1 | biimpi 119 |
. . . . . 6
⊢ (𝐴 ≈ 𝐵 → ∃ℎ ℎ:𝐴–1-1-onto→𝐵) |
3 | 2 | ad2antrr 485 |
. . . . 5
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) → ∃ℎ ℎ:𝐴–1-1-onto→𝐵) |
4 | | fveq1 5495 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑔 ∘ ℎ) → (𝑓‘𝑥) = ((𝑔 ∘ ℎ)‘𝑥)) |
5 | 4 | eqeq1d 2179 |
. . . . . . . . 9
⊢ (𝑓 = (𝑔 ∘ ℎ) → ((𝑓‘𝑥) = ∅ ↔ ((𝑔 ∘ ℎ)‘𝑥) = ∅)) |
6 | 5 | rexbidv 2471 |
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∘ ℎ) → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = ∅)) |
7 | 4 | eqeq1d 2179 |
. . . . . . . . 9
⊢ (𝑓 = (𝑔 ∘ ℎ) → ((𝑓‘𝑥) = 1o ↔ ((𝑔 ∘ ℎ)‘𝑥) = 1o)) |
8 | 7 | ralbidv 2470 |
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∘ ℎ) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o)) |
9 | 6, 8 | orbi12d 788 |
. . . . . . 7
⊢ (𝑓 = (𝑔 ∘ ℎ) → ((∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ↔ (∃𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o))) |
10 | | isomnimap 7113 |
. . . . . . . . 9
⊢ (𝐴 ∈ Omni → (𝐴 ∈ Omni ↔
∀𝑓 ∈
(2o ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
11 | 10 | ibi 175 |
. . . . . . . 8
⊢ (𝐴 ∈ Omni →
∀𝑓 ∈
(2o ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
12 | 11 | ad3antlr 490 |
. . . . . . 7
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → ∀𝑓 ∈ (2o
↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
13 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) → 𝑔 ∈ (2o
↑𝑚 𝐵)) |
14 | | 2onn 6500 |
. . . . . . . . . . . . 13
⊢
2o ∈ ω |
15 | | relen 6722 |
. . . . . . . . . . . . . 14
⊢ Rel
≈ |
16 | 15 | brrelex2i 4655 |
. . . . . . . . . . . . 13
⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
17 | | elmapg 6639 |
. . . . . . . . . . . . 13
⊢
((2o ∈ ω ∧ 𝐵 ∈ V) → (𝑔 ∈ (2o
↑𝑚 𝐵) ↔ 𝑔:𝐵⟶2o)) |
18 | 14, 16, 17 | sylancr 412 |
. . . . . . . . . . . 12
⊢ (𝐴 ≈ 𝐵 → (𝑔 ∈ (2o
↑𝑚 𝐵) ↔ 𝑔:𝐵⟶2o)) |
19 | 18 | ad2antrr 485 |
. . . . . . . . . . 11
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) → (𝑔 ∈ (2o
↑𝑚 𝐵) ↔ 𝑔:𝐵⟶2o)) |
20 | 13, 19 | mpbid 146 |
. . . . . . . . . 10
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) → 𝑔:𝐵⟶2o) |
21 | 20 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → 𝑔:𝐵⟶2o) |
22 | | f1of 5442 |
. . . . . . . . . 10
⊢ (ℎ:𝐴–1-1-onto→𝐵 → ℎ:𝐴⟶𝐵) |
23 | 22 | adantl 275 |
. . . . . . . . 9
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → ℎ:𝐴⟶𝐵) |
24 | | fco 5363 |
. . . . . . . . 9
⊢ ((𝑔:𝐵⟶2o ∧ ℎ:𝐴⟶𝐵) → (𝑔 ∘ ℎ):𝐴⟶2o) |
25 | 21, 23, 24 | syl2anc 409 |
. . . . . . . 8
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (𝑔 ∘ ℎ):𝐴⟶2o) |
26 | | simpllr 529 |
. . . . . . . . 9
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → 𝐴 ∈ Omni) |
27 | | elmapg 6639 |
. . . . . . . . 9
⊢
((2o ∈ ω ∧ 𝐴 ∈ Omni) → ((𝑔 ∘ ℎ) ∈ (2o
↑𝑚 𝐴) ↔ (𝑔 ∘ ℎ):𝐴⟶2o)) |
28 | 14, 26, 27 | sylancr 412 |
. . . . . . . 8
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → ((𝑔 ∘ ℎ) ∈ (2o
↑𝑚 𝐴) ↔ (𝑔 ∘ ℎ):𝐴⟶2o)) |
29 | 25, 28 | mpbird 166 |
. . . . . . 7
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (𝑔 ∘ ℎ) ∈ (2o
↑𝑚 𝐴)) |
30 | 9, 12, 29 | rspcdva 2839 |
. . . . . 6
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (∃𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o)) |
31 | | f1ofn 5443 |
. . . . . . . . . . . 12
⊢ (ℎ:𝐴–1-1-onto→𝐵 → ℎ Fn 𝐴) |
32 | 31 | ad2antlr 486 |
. . . . . . . . . . 11
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → ℎ Fn 𝐴) |
33 | | fvco2 5565 |
. . . . . . . . . . 11
⊢ ((ℎ Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝑔 ∘ ℎ)‘𝑥) = (𝑔‘(ℎ‘𝑥))) |
34 | 32, 33 | sylancom 418 |
. . . . . . . . . 10
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝑔 ∘ ℎ)‘𝑥) = (𝑔‘(ℎ‘𝑥))) |
35 | 34 | eqeq1d 2179 |
. . . . . . . . 9
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → (((𝑔 ∘ ℎ)‘𝑥) = ∅ ↔ (𝑔‘(ℎ‘𝑥)) = ∅)) |
36 | 23 | ffvelrnda 5631 |
. . . . . . . . . 10
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → (ℎ‘𝑥) ∈ 𝐵) |
37 | | simpr 109 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (ℎ‘𝑥)) → 𝑦 = (ℎ‘𝑥)) |
38 | 37 | fveq2d 5500 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (ℎ‘𝑥)) → (𝑔‘𝑦) = (𝑔‘(ℎ‘𝑥))) |
39 | 38 | eqeq1d 2179 |
. . . . . . . . . 10
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (ℎ‘𝑥)) → ((𝑔‘𝑦) = ∅ ↔ (𝑔‘(ℎ‘𝑥)) = ∅)) |
40 | 36, 39 | rspcedv 2838 |
. . . . . . . . 9
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝑔‘(ℎ‘𝑥)) = ∅ → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅)) |
41 | 35, 40 | sylbid 149 |
. . . . . . . 8
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → (((𝑔 ∘ ℎ)‘𝑥) = ∅ → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅)) |
42 | 41 | rexlimdva 2587 |
. . . . . . 7
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (∃𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = ∅ → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅)) |
43 | 31 | ad3antlr 490 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ℎ Fn 𝐴) |
44 | | f1ocnv 5455 |
. . . . . . . . . . . . . 14
⊢ (ℎ:𝐴–1-1-onto→𝐵 → ◡ℎ:𝐵–1-1-onto→𝐴) |
45 | | f1of 5442 |
. . . . . . . . . . . . . 14
⊢ (◡ℎ:𝐵–1-1-onto→𝐴 → ◡ℎ:𝐵⟶𝐴) |
46 | 44, 45 | syl 14 |
. . . . . . . . . . . . 13
⊢ (ℎ:𝐴–1-1-onto→𝐵 → ◡ℎ:𝐵⟶𝐴) |
47 | 46 | ad3antlr 490 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ◡ℎ:𝐵⟶𝐴) |
48 | | simpr 109 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
49 | 47, 48 | ffvelrnd 5632 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → (◡ℎ‘𝑦) ∈ 𝐴) |
50 | | fvco2 5565 |
. . . . . . . . . . 11
⊢ ((ℎ Fn 𝐴 ∧ (◡ℎ‘𝑦) ∈ 𝐴) → ((𝑔 ∘ ℎ)‘(◡ℎ‘𝑦)) = (𝑔‘(ℎ‘(◡ℎ‘𝑦)))) |
51 | 43, 49, 50 | syl2anc 409 |
. . . . . . . . . 10
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ((𝑔 ∘ ℎ)‘(◡ℎ‘𝑦)) = (𝑔‘(ℎ‘(◡ℎ‘𝑦)))) |
52 | | fveq2 5496 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡ℎ‘𝑦) → ((𝑔 ∘ ℎ)‘𝑥) = ((𝑔 ∘ ℎ)‘(◡ℎ‘𝑦))) |
53 | 52 | eqeq1d 2179 |
. . . . . . . . . . 11
⊢ (𝑥 = (◡ℎ‘𝑦) → (((𝑔 ∘ ℎ)‘𝑥) = 1o ↔ ((𝑔 ∘ ℎ)‘(◡ℎ‘𝑦)) = 1o)) |
54 | | simplr 525 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) |
55 | 53, 54, 49 | rspcdva 2839 |
. . . . . . . . . 10
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ((𝑔 ∘ ℎ)‘(◡ℎ‘𝑦)) = 1o) |
56 | | simpllr 529 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ℎ:𝐴–1-1-onto→𝐵) |
57 | | f1ocnvfv2 5757 |
. . . . . . . . . . . 12
⊢ ((ℎ:𝐴–1-1-onto→𝐵 ∧ 𝑦 ∈ 𝐵) → (ℎ‘(◡ℎ‘𝑦)) = 𝑦) |
58 | 57 | fveq2d 5500 |
. . . . . . . . . . 11
⊢ ((ℎ:𝐴–1-1-onto→𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑔‘(ℎ‘(◡ℎ‘𝑦))) = (𝑔‘𝑦)) |
59 | 56, 58 | sylancom 418 |
. . . . . . . . . 10
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → (𝑔‘(ℎ‘(◡ℎ‘𝑦))) = (𝑔‘𝑦)) |
60 | 51, 55, 59 | 3eqtr3rd 2212 |
. . . . . . . . 9
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → (𝑔‘𝑦) = 1o) |
61 | 60 | ralrimiva 2543 |
. . . . . . . 8
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) → ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o) |
62 | 61 | ex 114 |
. . . . . . 7
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o → ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o)) |
63 | 42, 62 | orim12d 781 |
. . . . . 6
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → ((∃𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) → (∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o))) |
64 | 30, 63 | mpd 13 |
. . . . 5
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o)) |
65 | 3, 64 | exlimddv 1891 |
. . . 4
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) → (∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o)) |
66 | 65 | ralrimiva 2543 |
. . 3
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) → ∀𝑔 ∈ (2o
↑𝑚 𝐵)(∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o)) |
67 | | isomnimap 7113 |
. . . . 5
⊢ (𝐵 ∈ V → (𝐵 ∈ Omni ↔
∀𝑔 ∈
(2o ↑𝑚 𝐵)(∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o))) |
68 | 16, 67 | syl 14 |
. . . 4
⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ Omni ↔ ∀𝑔 ∈ (2o
↑𝑚 𝐵)(∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o))) |
69 | 68 | adantr 274 |
. . 3
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) → (𝐵 ∈ Omni ↔ ∀𝑔 ∈ (2o
↑𝑚 𝐵)(∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o))) |
70 | 66, 69 | mpbird 166 |
. 2
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Omni) → 𝐵 ∈ Omni) |
71 | 70 | ex 114 |
1
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Omni → 𝐵 ∈ Omni)) |