ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enomnilem GIF version

Theorem enomnilem 7197
Description: Lemma for enomni 7198. One direction of the biconditional. (Contributed by Jim Kingdon, 13-Jul-2022.)
Assertion
Ref Expression
enomnilem (𝐴𝐵 → (𝐴 ∈ Omni → 𝐵 ∈ Omni))

Proof of Theorem enomnilem
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6801 . . . . . . 7 (𝐴𝐵 ↔ ∃ :𝐴1-1-onto𝐵)
21biimpi 120 . . . . . 6 (𝐴𝐵 → ∃ :𝐴1-1-onto𝐵)
32ad2antrr 488 . . . . 5 (((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) → ∃ :𝐴1-1-onto𝐵)
4 fveq1 5553 . . . . . . . . . 10 (𝑓 = (𝑔) → (𝑓𝑥) = ((𝑔)‘𝑥))
54eqeq1d 2202 . . . . . . . . 9 (𝑓 = (𝑔) → ((𝑓𝑥) = ∅ ↔ ((𝑔)‘𝑥) = ∅))
65rexbidv 2495 . . . . . . . 8 (𝑓 = (𝑔) → (∃𝑥𝐴 (𝑓𝑥) = ∅ ↔ ∃𝑥𝐴 ((𝑔)‘𝑥) = ∅))
74eqeq1d 2202 . . . . . . . . 9 (𝑓 = (𝑔) → ((𝑓𝑥) = 1o ↔ ((𝑔)‘𝑥) = 1o))
87ralbidv 2494 . . . . . . . 8 (𝑓 = (𝑔) → (∀𝑥𝐴 (𝑓𝑥) = 1o ↔ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o))
96, 8orbi12d 794 . . . . . . 7 (𝑓 = (𝑔) → ((∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o) ↔ (∃𝑥𝐴 ((𝑔)‘𝑥) = ∅ ∨ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o)))
10 isomnimap 7196 . . . . . . . . 9 (𝐴 ∈ Omni → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)))
1110ibi 176 . . . . . . . 8 (𝐴 ∈ Omni → ∀𝑓 ∈ (2o𝑚 𝐴)(∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))
1211ad3antlr 493 . . . . . . 7 ((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → ∀𝑓 ∈ (2o𝑚 𝐴)(∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))
13 simpr 110 . . . . . . . . . . 11 (((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) → 𝑔 ∈ (2o𝑚 𝐵))
14 2onn 6574 . . . . . . . . . . . . 13 2o ∈ ω
15 relen 6798 . . . . . . . . . . . . . 14 Rel ≈
1615brrelex2i 4703 . . . . . . . . . . . . 13 (𝐴𝐵𝐵 ∈ V)
17 elmapg 6715 . . . . . . . . . . . . 13 ((2o ∈ ω ∧ 𝐵 ∈ V) → (𝑔 ∈ (2o𝑚 𝐵) ↔ 𝑔:𝐵⟶2o))
1814, 16, 17sylancr 414 . . . . . . . . . . . 12 (𝐴𝐵 → (𝑔 ∈ (2o𝑚 𝐵) ↔ 𝑔:𝐵⟶2o))
1918ad2antrr 488 . . . . . . . . . . 11 (((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) → (𝑔 ∈ (2o𝑚 𝐵) ↔ 𝑔:𝐵⟶2o))
2013, 19mpbid 147 . . . . . . . . . 10 (((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) → 𝑔:𝐵⟶2o)
2120adantr 276 . . . . . . . . 9 ((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → 𝑔:𝐵⟶2o)
22 f1of 5500 . . . . . . . . . 10 (:𝐴1-1-onto𝐵:𝐴𝐵)
2322adantl 277 . . . . . . . . 9 ((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → :𝐴𝐵)
24 fco 5419 . . . . . . . . 9 ((𝑔:𝐵⟶2o:𝐴𝐵) → (𝑔):𝐴⟶2o)
2521, 23, 24syl2anc 411 . . . . . . . 8 ((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → (𝑔):𝐴⟶2o)
26 simpllr 534 . . . . . . . . 9 ((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → 𝐴 ∈ Omni)
27 elmapg 6715 . . . . . . . . 9 ((2o ∈ ω ∧ 𝐴 ∈ Omni) → ((𝑔) ∈ (2o𝑚 𝐴) ↔ (𝑔):𝐴⟶2o))
2814, 26, 27sylancr 414 . . . . . . . 8 ((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → ((𝑔) ∈ (2o𝑚 𝐴) ↔ (𝑔):𝐴⟶2o))
2925, 28mpbird 167 . . . . . . 7 ((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → (𝑔) ∈ (2o𝑚 𝐴))
309, 12, 29rspcdva 2869 . . . . . 6 ((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → (∃𝑥𝐴 ((𝑔)‘𝑥) = ∅ ∨ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o))
31 f1ofn 5501 . . . . . . . . . . . 12 (:𝐴1-1-onto𝐵 Fn 𝐴)
3231ad2antlr 489 . . . . . . . . . . 11 (((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ 𝑥𝐴) → Fn 𝐴)
33 fvco2 5626 . . . . . . . . . . 11 (( Fn 𝐴𝑥𝐴) → ((𝑔)‘𝑥) = (𝑔‘(𝑥)))
3432, 33sylancom 420 . . . . . . . . . 10 (((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ 𝑥𝐴) → ((𝑔)‘𝑥) = (𝑔‘(𝑥)))
3534eqeq1d 2202 . . . . . . . . 9 (((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ 𝑥𝐴) → (((𝑔)‘𝑥) = ∅ ↔ (𝑔‘(𝑥)) = ∅))
3623ffvelcdmda 5693 . . . . . . . . . 10 (((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ 𝑥𝐴) → (𝑥) ∈ 𝐵)
37 simpr 110 . . . . . . . . . . . 12 ((((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ 𝑥𝐴) ∧ 𝑦 = (𝑥)) → 𝑦 = (𝑥))
3837fveq2d 5558 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ 𝑥𝐴) ∧ 𝑦 = (𝑥)) → (𝑔𝑦) = (𝑔‘(𝑥)))
3938eqeq1d 2202 . . . . . . . . . 10 ((((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ 𝑥𝐴) ∧ 𝑦 = (𝑥)) → ((𝑔𝑦) = ∅ ↔ (𝑔‘(𝑥)) = ∅))
4036, 39rspcedv 2868 . . . . . . . . 9 (((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ 𝑥𝐴) → ((𝑔‘(𝑥)) = ∅ → ∃𝑦𝐵 (𝑔𝑦) = ∅))
4135, 40sylbid 150 . . . . . . . 8 (((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ 𝑥𝐴) → (((𝑔)‘𝑥) = ∅ → ∃𝑦𝐵 (𝑔𝑦) = ∅))
4241rexlimdva 2611 . . . . . . 7 ((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → (∃𝑥𝐴 ((𝑔)‘𝑥) = ∅ → ∃𝑦𝐵 (𝑔𝑦) = ∅))
4331ad3antlr 493 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → Fn 𝐴)
44 f1ocnv 5513 . . . . . . . . . . . . . 14 (:𝐴1-1-onto𝐵:𝐵1-1-onto𝐴)
45 f1of 5500 . . . . . . . . . . . . . 14 (:𝐵1-1-onto𝐴:𝐵𝐴)
4644, 45syl 14 . . . . . . . . . . . . 13 (:𝐴1-1-onto𝐵:𝐵𝐴)
4746ad3antlr 493 . . . . . . . . . . . 12 ((((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → :𝐵𝐴)
48 simpr 110 . . . . . . . . . . . 12 ((((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → 𝑦𝐵)
4947, 48ffvelcdmd 5694 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → (𝑦) ∈ 𝐴)
50 fvco2 5626 . . . . . . . . . . 11 (( Fn 𝐴 ∧ (𝑦) ∈ 𝐴) → ((𝑔)‘(𝑦)) = (𝑔‘(‘(𝑦))))
5143, 49, 50syl2anc 411 . . . . . . . . . 10 ((((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → ((𝑔)‘(𝑦)) = (𝑔‘(‘(𝑦))))
52 fveq2 5554 . . . . . . . . . . . 12 (𝑥 = (𝑦) → ((𝑔)‘𝑥) = ((𝑔)‘(𝑦)))
5352eqeq1d 2202 . . . . . . . . . . 11 (𝑥 = (𝑦) → (((𝑔)‘𝑥) = 1o ↔ ((𝑔)‘(𝑦)) = 1o))
54 simplr 528 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o)
5553, 54, 49rspcdva 2869 . . . . . . . . . 10 ((((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → ((𝑔)‘(𝑦)) = 1o)
56 simpllr 534 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → :𝐴1-1-onto𝐵)
57 f1ocnvfv2 5821 . . . . . . . . . . . 12 ((:𝐴1-1-onto𝐵𝑦𝐵) → (‘(𝑦)) = 𝑦)
5857fveq2d 5558 . . . . . . . . . . 11 ((:𝐴1-1-onto𝐵𝑦𝐵) → (𝑔‘(‘(𝑦))) = (𝑔𝑦))
5956, 58sylancom 420 . . . . . . . . . 10 ((((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → (𝑔‘(‘(𝑦))) = (𝑔𝑦))
6051, 55, 593eqtr3rd 2235 . . . . . . . . 9 ((((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → (𝑔𝑦) = 1o)
6160ralrimiva 2567 . . . . . . . 8 (((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) → ∀𝑦𝐵 (𝑔𝑦) = 1o)
6261ex 115 . . . . . . 7 ((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → (∀𝑥𝐴 ((𝑔)‘𝑥) = 1o → ∀𝑦𝐵 (𝑔𝑦) = 1o))
6342, 62orim12d 787 . . . . . 6 ((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → ((∃𝑥𝐴 ((𝑔)‘𝑥) = ∅ ∨ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) → (∃𝑦𝐵 (𝑔𝑦) = ∅ ∨ ∀𝑦𝐵 (𝑔𝑦) = 1o)))
6430, 63mpd 13 . . . . 5 ((((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → (∃𝑦𝐵 (𝑔𝑦) = ∅ ∨ ∀𝑦𝐵 (𝑔𝑦) = 1o))
653, 64exlimddv 1910 . . . 4 (((𝐴𝐵𝐴 ∈ Omni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) → (∃𝑦𝐵 (𝑔𝑦) = ∅ ∨ ∀𝑦𝐵 (𝑔𝑦) = 1o))
6665ralrimiva 2567 . . 3 ((𝐴𝐵𝐴 ∈ Omni) → ∀𝑔 ∈ (2o𝑚 𝐵)(∃𝑦𝐵 (𝑔𝑦) = ∅ ∨ ∀𝑦𝐵 (𝑔𝑦) = 1o))
67 isomnimap 7196 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ Omni ↔ ∀𝑔 ∈ (2o𝑚 𝐵)(∃𝑦𝐵 (𝑔𝑦) = ∅ ∨ ∀𝑦𝐵 (𝑔𝑦) = 1o)))
6816, 67syl 14 . . . 4 (𝐴𝐵 → (𝐵 ∈ Omni ↔ ∀𝑔 ∈ (2o𝑚 𝐵)(∃𝑦𝐵 (𝑔𝑦) = ∅ ∨ ∀𝑦𝐵 (𝑔𝑦) = 1o)))
6968adantr 276 . . 3 ((𝐴𝐵𝐴 ∈ Omni) → (𝐵 ∈ Omni ↔ ∀𝑔 ∈ (2o𝑚 𝐵)(∃𝑦𝐵 (𝑔𝑦) = ∅ ∨ ∀𝑦𝐵 (𝑔𝑦) = 1o)))
7066, 69mpbird 167 . 2 ((𝐴𝐵𝐴 ∈ Omni) → 𝐵 ∈ Omni)
7170ex 115 1 (𝐴𝐵 → (𝐴 ∈ Omni → 𝐵 ∈ Omni))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  Vcvv 2760  c0 3446   class class class wbr 4029  ωcom 4622  ccnv 4658  ccom 4663   Fn wfn 5249  wf 5250  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  1oc1o 6462  2oc2o 6463  𝑚 cmap 6702  cen 6792  Omnicomni 7193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1o 6469  df-2o 6470  df-map 6704  df-en 6795  df-omni 7194
This theorem is referenced by:  enomni  7198
  Copyright terms: Public domain W3C validator