ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpen GIF version

Theorem xpen 6732
Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.)
Assertion
Ref Expression
xpen ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))

Proof of Theorem xpen
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6634 . . . 4 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
21biimpi 119 . . 3 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
32adantr 274 . 2 ((𝐴𝐵𝐶𝐷) → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
4 bren 6634 . . . . 5 (𝐶𝐷 ↔ ∃𝑔 𝑔:𝐶1-1-onto𝐷)
54biimpi 119 . . . 4 (𝐶𝐷 → ∃𝑔 𝑔:𝐶1-1-onto𝐷)
65ad2antlr 480 . . 3 (((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) → ∃𝑔 𝑔:𝐶1-1-onto𝐷)
7 relen 6631 . . . . . . 7 Rel ≈
87brrelex1i 4577 . . . . . 6 (𝐴𝐵𝐴 ∈ V)
97brrelex1i 4577 . . . . . 6 (𝐶𝐷𝐶 ∈ V)
10 xpexg 4648 . . . . . 6 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 × 𝐶) ∈ V)
118, 9, 10syl2an 287 . . . . 5 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ∈ V)
1211ad2antrr 479 . . . 4 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝐴 × 𝐶) ∈ V)
13 simplr 519 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → 𝑓:𝐴1-1-onto𝐵)
14 f1ofn 5361 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝑓 Fn 𝐴)
15 dffn5im 5460 . . . . . . . 8 (𝑓 Fn 𝐴𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)))
1614, 15syl 14 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)))
17 f1oeq1 5351 . . . . . . 7 (𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)) → (𝑓:𝐴1-1-onto𝐵 ↔ (𝑥𝐴 ↦ (𝑓𝑥)):𝐴1-1-onto𝐵))
1813, 16, 173syl 17 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑓:𝐴1-1-onto𝐵 ↔ (𝑥𝐴 ↦ (𝑓𝑥)):𝐴1-1-onto𝐵))
1913, 18mpbid 146 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑥𝐴 ↦ (𝑓𝑥)):𝐴1-1-onto𝐵)
20 simpr 109 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → 𝑔:𝐶1-1-onto𝐷)
21 f1ofn 5361 . . . . . . . 8 (𝑔:𝐶1-1-onto𝐷𝑔 Fn 𝐶)
22 dffn5im 5460 . . . . . . . 8 (𝑔 Fn 𝐶𝑔 = (𝑦𝐶 ↦ (𝑔𝑦)))
2321, 22syl 14 . . . . . . 7 (𝑔:𝐶1-1-onto𝐷𝑔 = (𝑦𝐶 ↦ (𝑔𝑦)))
24 f1oeq1 5351 . . . . . . 7 (𝑔 = (𝑦𝐶 ↦ (𝑔𝑦)) → (𝑔:𝐶1-1-onto𝐷 ↔ (𝑦𝐶 ↦ (𝑔𝑦)):𝐶1-1-onto𝐷))
2520, 23, 243syl 17 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑔:𝐶1-1-onto𝐷 ↔ (𝑦𝐶 ↦ (𝑔𝑦)):𝐶1-1-onto𝐷))
2620, 25mpbid 146 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑦𝐶 ↦ (𝑔𝑦)):𝐶1-1-onto𝐷)
2719, 26xpf1o 6731 . . . 4 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑥𝐴, 𝑦𝐶 ↦ ⟨(𝑓𝑥), (𝑔𝑦)⟩):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷))
28 f1oeng 6644 . . . 4 (((𝐴 × 𝐶) ∈ V ∧ (𝑥𝐴, 𝑦𝐶 ↦ ⟨(𝑓𝑥), (𝑔𝑦)⟩):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷)) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
2912, 27, 28syl2anc 408 . . 3 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
306, 29exlimddv 1870 . 2 (((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
313, 30exlimddv 1870 1 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  Vcvv 2681  cop 3525   class class class wbr 3924  cmpt 3984   × cxp 4532   Fn wfn 5113  1-1-ontowf1o 5117  cfv 5118  cmpo 5769  cen 6625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-en 6628
This theorem is referenced by:  xpdjuen  7067  xpnnen  11896  xpomen  11897  qnnen  11933
  Copyright terms: Public domain W3C validator