ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpen GIF version

Theorem xpen 6924
Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.)
Assertion
Ref Expression
xpen ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))

Proof of Theorem xpen
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6824 . . . 4 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
21biimpi 120 . . 3 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
32adantr 276 . 2 ((𝐴𝐵𝐶𝐷) → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
4 bren 6824 . . . . 5 (𝐶𝐷 ↔ ∃𝑔 𝑔:𝐶1-1-onto𝐷)
54biimpi 120 . . . 4 (𝐶𝐷 → ∃𝑔 𝑔:𝐶1-1-onto𝐷)
65ad2antlr 489 . . 3 (((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) → ∃𝑔 𝑔:𝐶1-1-onto𝐷)
7 relen 6821 . . . . . . 7 Rel ≈
87brrelex1i 4716 . . . . . 6 (𝐴𝐵𝐴 ∈ V)
97brrelex1i 4716 . . . . . 6 (𝐶𝐷𝐶 ∈ V)
10 xpexg 4787 . . . . . 6 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 × 𝐶) ∈ V)
118, 9, 10syl2an 289 . . . . 5 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ∈ V)
1211ad2antrr 488 . . . 4 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝐴 × 𝐶) ∈ V)
13 simplr 528 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → 𝑓:𝐴1-1-onto𝐵)
14 f1ofn 5517 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝑓 Fn 𝐴)
15 dffn5im 5618 . . . . . . . 8 (𝑓 Fn 𝐴𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)))
1614, 15syl 14 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)))
17 f1oeq1 5504 . . . . . . 7 (𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)) → (𝑓:𝐴1-1-onto𝐵 ↔ (𝑥𝐴 ↦ (𝑓𝑥)):𝐴1-1-onto𝐵))
1813, 16, 173syl 17 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑓:𝐴1-1-onto𝐵 ↔ (𝑥𝐴 ↦ (𝑓𝑥)):𝐴1-1-onto𝐵))
1913, 18mpbid 147 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑥𝐴 ↦ (𝑓𝑥)):𝐴1-1-onto𝐵)
20 simpr 110 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → 𝑔:𝐶1-1-onto𝐷)
21 f1ofn 5517 . . . . . . . 8 (𝑔:𝐶1-1-onto𝐷𝑔 Fn 𝐶)
22 dffn5im 5618 . . . . . . . 8 (𝑔 Fn 𝐶𝑔 = (𝑦𝐶 ↦ (𝑔𝑦)))
2321, 22syl 14 . . . . . . 7 (𝑔:𝐶1-1-onto𝐷𝑔 = (𝑦𝐶 ↦ (𝑔𝑦)))
24 f1oeq1 5504 . . . . . . 7 (𝑔 = (𝑦𝐶 ↦ (𝑔𝑦)) → (𝑔:𝐶1-1-onto𝐷 ↔ (𝑦𝐶 ↦ (𝑔𝑦)):𝐶1-1-onto𝐷))
2520, 23, 243syl 17 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑔:𝐶1-1-onto𝐷 ↔ (𝑦𝐶 ↦ (𝑔𝑦)):𝐶1-1-onto𝐷))
2620, 25mpbid 147 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑦𝐶 ↦ (𝑔𝑦)):𝐶1-1-onto𝐷)
2719, 26xpf1o 6923 . . . 4 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑥𝐴, 𝑦𝐶 ↦ ⟨(𝑓𝑥), (𝑔𝑦)⟩):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷))
28 f1oeng 6834 . . . 4 (((𝐴 × 𝐶) ∈ V ∧ (𝑥𝐴, 𝑦𝐶 ↦ ⟨(𝑓𝑥), (𝑔𝑦)⟩):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷)) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
2912, 27, 28syl2anc 411 . . 3 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
306, 29exlimddv 1921 . 2 (((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
313, 30exlimddv 1921 1 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wex 1514  wcel 2175  Vcvv 2771  cop 3635   class class class wbr 4043  cmpt 4104   × cxp 4671   Fn wfn 5263  1-1-ontowf1o 5267  cfv 5268  cmpo 5936  cen 6815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-en 6818
This theorem is referenced by:  xpdjuen  7312  xpnnen  12684  xpomen  12685  qnnen  12721
  Copyright terms: Public domain W3C validator