| Step | Hyp | Ref
| Expression |
| 1 | | bren 6806 |
. . . 4
⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| 2 | 1 | biimpi 120 |
. . 3
⊢ (𝐴 ≈ 𝐵 → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| 3 | 2 | adantr 276 |
. 2
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| 4 | | bren 6806 |
. . . . 5
⊢ (𝐶 ≈ 𝐷 ↔ ∃𝑔 𝑔:𝐶–1-1-onto→𝐷) |
| 5 | 4 | biimpi 120 |
. . . 4
⊢ (𝐶 ≈ 𝐷 → ∃𝑔 𝑔:𝐶–1-1-onto→𝐷) |
| 6 | 5 | ad2antlr 489 |
. . 3
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ 𝑓:𝐴–1-1-onto→𝐵) → ∃𝑔 𝑔:𝐶–1-1-onto→𝐷) |
| 7 | | relen 6803 |
. . . . . . 7
⊢ Rel
≈ |
| 8 | 7 | brrelex1i 4706 |
. . . . . 6
⊢ (𝐴 ≈ 𝐵 → 𝐴 ∈ V) |
| 9 | 7 | brrelex1i 4706 |
. . . . . 6
⊢ (𝐶 ≈ 𝐷 → 𝐶 ∈ V) |
| 10 | | xpexg 4777 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 × 𝐶) ∈ V) |
| 11 | 8, 9, 10 | syl2an 289 |
. . . . 5
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ∈ V) |
| 12 | 11 | ad2antrr 488 |
. . . 4
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝐴 × 𝐶) ∈ V) |
| 13 | | simplr 528 |
. . . . . 6
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ 𝑔:𝐶–1-1-onto→𝐷) → 𝑓:𝐴–1-1-onto→𝐵) |
| 14 | | f1ofn 5505 |
. . . . . . . 8
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) |
| 15 | | dffn5im 5606 |
. . . . . . . 8
⊢ (𝑓 Fn 𝐴 → 𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥))) |
| 16 | 14, 15 | syl 14 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥))) |
| 17 | | f1oeq1 5492 |
. . . . . . 7
⊢ (𝑓 = (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥)) → (𝑓:𝐴–1-1-onto→𝐵 ↔ (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥)):𝐴–1-1-onto→𝐵)) |
| 18 | 13, 16, 17 | 3syl 17 |
. . . . . 6
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝑓:𝐴–1-1-onto→𝐵 ↔ (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥)):𝐴–1-1-onto→𝐵)) |
| 19 | 13, 18 | mpbid 147 |
. . . . 5
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝑥 ∈ 𝐴 ↦ (𝑓‘𝑥)):𝐴–1-1-onto→𝐵) |
| 20 | | simpr 110 |
. . . . . 6
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ 𝑔:𝐶–1-1-onto→𝐷) → 𝑔:𝐶–1-1-onto→𝐷) |
| 21 | | f1ofn 5505 |
. . . . . . . 8
⊢ (𝑔:𝐶–1-1-onto→𝐷 → 𝑔 Fn 𝐶) |
| 22 | | dffn5im 5606 |
. . . . . . . 8
⊢ (𝑔 Fn 𝐶 → 𝑔 = (𝑦 ∈ 𝐶 ↦ (𝑔‘𝑦))) |
| 23 | 21, 22 | syl 14 |
. . . . . . 7
⊢ (𝑔:𝐶–1-1-onto→𝐷 → 𝑔 = (𝑦 ∈ 𝐶 ↦ (𝑔‘𝑦))) |
| 24 | | f1oeq1 5492 |
. . . . . . 7
⊢ (𝑔 = (𝑦 ∈ 𝐶 ↦ (𝑔‘𝑦)) → (𝑔:𝐶–1-1-onto→𝐷 ↔ (𝑦 ∈ 𝐶 ↦ (𝑔‘𝑦)):𝐶–1-1-onto→𝐷)) |
| 25 | 20, 23, 24 | 3syl 17 |
. . . . . 6
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝑔:𝐶–1-1-onto→𝐷 ↔ (𝑦 ∈ 𝐶 ↦ (𝑔‘𝑦)):𝐶–1-1-onto→𝐷)) |
| 26 | 20, 25 | mpbid 147 |
. . . . 5
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝑦 ∈ 𝐶 ↦ (𝑔‘𝑦)):𝐶–1-1-onto→𝐷) |
| 27 | 19, 26 | xpf1o 6905 |
. . . 4
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 〈(𝑓‘𝑥), (𝑔‘𝑦)〉):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷)) |
| 28 | | f1oeng 6816 |
. . . 4
⊢ (((𝐴 × 𝐶) ∈ V ∧ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 〈(𝑓‘𝑥), (𝑔‘𝑦)〉):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷)) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) |
| 29 | 12, 27, 28 | syl2anc 411 |
. . 3
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ 𝑓:𝐴–1-1-onto→𝐵) ∧ 𝑔:𝐶–1-1-onto→𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) |
| 30 | 6, 29 | exlimddv 1913 |
. 2
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ 𝑓:𝐴–1-1-onto→𝐵) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) |
| 31 | 3, 30 | exlimddv 1913 |
1
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) |