ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpen GIF version

Theorem xpen 6957
Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.)
Assertion
Ref Expression
xpen ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))

Proof of Theorem xpen
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6848 . . . 4 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
21biimpi 120 . . 3 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
32adantr 276 . 2 ((𝐴𝐵𝐶𝐷) → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
4 bren 6848 . . . . 5 (𝐶𝐷 ↔ ∃𝑔 𝑔:𝐶1-1-onto𝐷)
54biimpi 120 . . . 4 (𝐶𝐷 → ∃𝑔 𝑔:𝐶1-1-onto𝐷)
65ad2antlr 489 . . 3 (((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) → ∃𝑔 𝑔:𝐶1-1-onto𝐷)
7 relen 6844 . . . . . . 7 Rel ≈
87brrelex1i 4726 . . . . . 6 (𝐴𝐵𝐴 ∈ V)
97brrelex1i 4726 . . . . . 6 (𝐶𝐷𝐶 ∈ V)
10 xpexg 4797 . . . . . 6 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 × 𝐶) ∈ V)
118, 9, 10syl2an 289 . . . . 5 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ∈ V)
1211ad2antrr 488 . . . 4 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝐴 × 𝐶) ∈ V)
13 simplr 528 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → 𝑓:𝐴1-1-onto𝐵)
14 f1ofn 5535 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝑓 Fn 𝐴)
15 dffn5im 5637 . . . . . . . 8 (𝑓 Fn 𝐴𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)))
1614, 15syl 14 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)))
17 f1oeq1 5522 . . . . . . 7 (𝑓 = (𝑥𝐴 ↦ (𝑓𝑥)) → (𝑓:𝐴1-1-onto𝐵 ↔ (𝑥𝐴 ↦ (𝑓𝑥)):𝐴1-1-onto𝐵))
1813, 16, 173syl 17 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑓:𝐴1-1-onto𝐵 ↔ (𝑥𝐴 ↦ (𝑓𝑥)):𝐴1-1-onto𝐵))
1913, 18mpbid 147 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑥𝐴 ↦ (𝑓𝑥)):𝐴1-1-onto𝐵)
20 simpr 110 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → 𝑔:𝐶1-1-onto𝐷)
21 f1ofn 5535 . . . . . . . 8 (𝑔:𝐶1-1-onto𝐷𝑔 Fn 𝐶)
22 dffn5im 5637 . . . . . . . 8 (𝑔 Fn 𝐶𝑔 = (𝑦𝐶 ↦ (𝑔𝑦)))
2321, 22syl 14 . . . . . . 7 (𝑔:𝐶1-1-onto𝐷𝑔 = (𝑦𝐶 ↦ (𝑔𝑦)))
24 f1oeq1 5522 . . . . . . 7 (𝑔 = (𝑦𝐶 ↦ (𝑔𝑦)) → (𝑔:𝐶1-1-onto𝐷 ↔ (𝑦𝐶 ↦ (𝑔𝑦)):𝐶1-1-onto𝐷))
2520, 23, 243syl 17 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑔:𝐶1-1-onto𝐷 ↔ (𝑦𝐶 ↦ (𝑔𝑦)):𝐶1-1-onto𝐷))
2620, 25mpbid 147 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑦𝐶 ↦ (𝑔𝑦)):𝐶1-1-onto𝐷)
2719, 26xpf1o 6956 . . . 4 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝑥𝐴, 𝑦𝐶 ↦ ⟨(𝑓𝑥), (𝑔𝑦)⟩):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷))
28 f1oeng 6861 . . . 4 (((𝐴 × 𝐶) ∈ V ∧ (𝑥𝐴, 𝑦𝐶 ↦ ⟨(𝑓𝑥), (𝑔𝑦)⟩):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷)) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
2912, 27, 28syl2anc 411 . . 3 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) ∧ 𝑔:𝐶1-1-onto𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
306, 29exlimddv 1923 . 2 (((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1-onto𝐵) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
313, 30exlimddv 1923 1 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773  cop 3641   class class class wbr 4051  cmpt 4113   × cxp 4681   Fn wfn 5275  1-1-ontowf1o 5279  cfv 5280  cmpo 5959  cen 6838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-en 6841
This theorem is referenced by:  xpdjuen  7346  xpnnen  12840  xpomen  12841  qnnen  12877
  Copyright terms: Public domain W3C validator