ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju GIF version

Theorem eldju 6961
Description: Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
eldju (𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem eldju
StepHypRef Expression
1 djuunr 6959 . . . 4 (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴𝐵)
21eqcomi 2144 . . 3 (𝐴𝐵) = (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵))
32eleq2i 2207 . 2 (𝐶 ∈ (𝐴𝐵) ↔ 𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)))
4 elun 3222 . . 3 (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵)))
5 djulf1or 6949 . . . . . 6 (inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)
6 f1ofn 5376 . . . . . 6 ((inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴) → (inl ↾ 𝐴) Fn 𝐴)
7 fvelrnb 5477 . . . . . 6 ((inl ↾ 𝐴) Fn 𝐴 → (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶))
85, 6, 7mp2b 8 . . . . 5 (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶)
9 eqcom 2142 . . . . . 6 (((inl ↾ 𝐴)‘𝑥) = 𝐶𝐶 = ((inl ↾ 𝐴)‘𝑥))
109rexbii 2445 . . . . 5 (∃𝑥𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶 ↔ ∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥))
118, 10bitri 183 . . . 4 (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥))
12 djurf1or 6950 . . . . . 6 (inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵)
13 f1ofn 5376 . . . . . 6 ((inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵) → (inr ↾ 𝐵) Fn 𝐵)
14 fvelrnb 5477 . . . . . 6 ((inr ↾ 𝐵) Fn 𝐵 → (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶))
1512, 13, 14mp2b 8 . . . . 5 (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶)
16 eqcom 2142 . . . . . 6 (((inr ↾ 𝐵)‘𝑥) = 𝐶𝐶 = ((inr ↾ 𝐵)‘𝑥))
1716rexbii 2445 . . . . 5 (∃𝑥𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶 ↔ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))
1815, 17bitri 183 . . . 4 (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))
1911, 18orbi12i 754 . . 3 ((𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵)) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
204, 19bitri 183 . 2 (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
213, 20bitri 183 1 (𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
Colors of variables: wff set class
Syntax hints:  wb 104  wo 698   = wceq 1332  wcel 1481  wrex 2418  cun 3074  c0 3368  {csn 3532   × cxp 4545  ran crn 4548  cres 4549   Fn wfn 5126  1-1-ontowf1o 5130  cfv 5131  1oc1o 6314  cdju 6930  inlcinl 6938  inrcinr 6939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047  df-1o 6321  df-dju 6931  df-inl 6940  df-inr 6941
This theorem is referenced by:  djur  6962  exmidfodomrlemreseldju  7073
  Copyright terms: Public domain W3C validator