ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju GIF version

Theorem eldju 7045
Description: Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
eldju (𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem eldju
StepHypRef Expression
1 djuunr 7043 . . . 4 (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴𝐵)
21eqcomi 2174 . . 3 (𝐴𝐵) = (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵))
32eleq2i 2237 . 2 (𝐶 ∈ (𝐴𝐵) ↔ 𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)))
4 elun 3268 . . 3 (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵)))
5 djulf1or 7033 . . . . . 6 (inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)
6 f1ofn 5443 . . . . . 6 ((inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴) → (inl ↾ 𝐴) Fn 𝐴)
7 fvelrnb 5544 . . . . . 6 ((inl ↾ 𝐴) Fn 𝐴 → (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶))
85, 6, 7mp2b 8 . . . . 5 (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶)
9 eqcom 2172 . . . . . 6 (((inl ↾ 𝐴)‘𝑥) = 𝐶𝐶 = ((inl ↾ 𝐴)‘𝑥))
109rexbii 2477 . . . . 5 (∃𝑥𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶 ↔ ∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥))
118, 10bitri 183 . . . 4 (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥))
12 djurf1or 7034 . . . . . 6 (inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵)
13 f1ofn 5443 . . . . . 6 ((inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵) → (inr ↾ 𝐵) Fn 𝐵)
14 fvelrnb 5544 . . . . . 6 ((inr ↾ 𝐵) Fn 𝐵 → (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶))
1512, 13, 14mp2b 8 . . . . 5 (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶)
16 eqcom 2172 . . . . . 6 (((inr ↾ 𝐵)‘𝑥) = 𝐶𝐶 = ((inr ↾ 𝐵)‘𝑥))
1716rexbii 2477 . . . . 5 (∃𝑥𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶 ↔ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))
1815, 17bitri 183 . . . 4 (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))
1911, 18orbi12i 759 . . 3 ((𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵)) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
204, 19bitri 183 . 2 (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
213, 20bitri 183 1 (𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
Colors of variables: wff set class
Syntax hints:  wb 104  wo 703   = wceq 1348  wcel 2141  wrex 2449  cun 3119  c0 3414  {csn 3583   × cxp 4609  ran crn 4612  cres 4613   Fn wfn 5193  1-1-ontowf1o 5197  cfv 5198  1oc1o 6388  cdju 7014  inlcinl 7022  inrcinr 7023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-dju 7015  df-inl 7024  df-inr 7025
This theorem is referenced by:  djur  7046  exmidfodomrlemreseldju  7177
  Copyright terms: Public domain W3C validator