ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju GIF version

Theorem eldju 7134
Description: Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
eldju (𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem eldju
StepHypRef Expression
1 djuunr 7132 . . . 4 (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴𝐵)
21eqcomi 2200 . . 3 (𝐴𝐵) = (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵))
32eleq2i 2263 . 2 (𝐶 ∈ (𝐴𝐵) ↔ 𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)))
4 elun 3304 . . 3 (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵)))
5 djulf1or 7122 . . . . . 6 (inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)
6 f1ofn 5505 . . . . . 6 ((inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴) → (inl ↾ 𝐴) Fn 𝐴)
7 fvelrnb 5608 . . . . . 6 ((inl ↾ 𝐴) Fn 𝐴 → (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶))
85, 6, 7mp2b 8 . . . . 5 (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶)
9 eqcom 2198 . . . . . 6 (((inl ↾ 𝐴)‘𝑥) = 𝐶𝐶 = ((inl ↾ 𝐴)‘𝑥))
109rexbii 2504 . . . . 5 (∃𝑥𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶 ↔ ∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥))
118, 10bitri 184 . . . 4 (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥))
12 djurf1or 7123 . . . . . 6 (inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵)
13 f1ofn 5505 . . . . . 6 ((inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵) → (inr ↾ 𝐵) Fn 𝐵)
14 fvelrnb 5608 . . . . . 6 ((inr ↾ 𝐵) Fn 𝐵 → (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶))
1512, 13, 14mp2b 8 . . . . 5 (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶)
16 eqcom 2198 . . . . . 6 (((inr ↾ 𝐵)‘𝑥) = 𝐶𝐶 = ((inr ↾ 𝐵)‘𝑥))
1716rexbii 2504 . . . . 5 (∃𝑥𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶 ↔ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))
1815, 17bitri 184 . . . 4 (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))
1911, 18orbi12i 765 . . 3 ((𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵)) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
204, 19bitri 184 . 2 (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
213, 20bitri 184 1 (𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 709   = wceq 1364  wcel 2167  wrex 2476  cun 3155  c0 3450  {csn 3622   × cxp 4661  ran crn 4664  cres 4665   Fn wfn 5253  1-1-ontowf1o 5257  cfv 5258  1oc1o 6467  cdju 7103  inlcinl 7111  inrcinr 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-dju 7104  df-inl 7113  df-inr 7114
This theorem is referenced by:  djur  7135  exmidfodomrlemreseldju  7267
  Copyright terms: Public domain W3C validator