ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju GIF version

Theorem eldju 7170
Description: Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
eldju (𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem eldju
StepHypRef Expression
1 djuunr 7168 . . . 4 (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴𝐵)
21eqcomi 2209 . . 3 (𝐴𝐵) = (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵))
32eleq2i 2272 . 2 (𝐶 ∈ (𝐴𝐵) ↔ 𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)))
4 elun 3314 . . 3 (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵)))
5 djulf1or 7158 . . . . . 6 (inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)
6 f1ofn 5523 . . . . . 6 ((inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴) → (inl ↾ 𝐴) Fn 𝐴)
7 fvelrnb 5626 . . . . . 6 ((inl ↾ 𝐴) Fn 𝐴 → (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶))
85, 6, 7mp2b 8 . . . . 5 (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶)
9 eqcom 2207 . . . . . 6 (((inl ↾ 𝐴)‘𝑥) = 𝐶𝐶 = ((inl ↾ 𝐴)‘𝑥))
109rexbii 2513 . . . . 5 (∃𝑥𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶 ↔ ∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥))
118, 10bitri 184 . . . 4 (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥))
12 djurf1or 7159 . . . . . 6 (inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵)
13 f1ofn 5523 . . . . . 6 ((inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵) → (inr ↾ 𝐵) Fn 𝐵)
14 fvelrnb 5626 . . . . . 6 ((inr ↾ 𝐵) Fn 𝐵 → (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶))
1512, 13, 14mp2b 8 . . . . 5 (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶)
16 eqcom 2207 . . . . . 6 (((inr ↾ 𝐵)‘𝑥) = 𝐶𝐶 = ((inr ↾ 𝐵)‘𝑥))
1716rexbii 2513 . . . . 5 (∃𝑥𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶 ↔ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))
1815, 17bitri 184 . . . 4 (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))
1911, 18orbi12i 766 . . 3 ((𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵)) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
204, 19bitri 184 . 2 (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
213, 20bitri 184 1 (𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 710   = wceq 1373  wcel 2176  wrex 2485  cun 3164  c0 3460  {csn 3633   × cxp 4673  ran crn 4676  cres 4677   Fn wfn 5266  1-1-ontowf1o 5270  cfv 5271  1oc1o 6495  cdju 7139  inlcinl 7147  inrcinr 7148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6226  df-2nd 6227  df-1o 6502  df-dju 7140  df-inl 7149  df-inr 7150
This theorem is referenced by:  djur  7171  exmidfodomrlemreseldju  7308
  Copyright terms: Public domain W3C validator