ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju GIF version

Theorem eldju 7033
Description: Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
eldju (𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem eldju
StepHypRef Expression
1 djuunr 7031 . . . 4 (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴𝐵)
21eqcomi 2169 . . 3 (𝐴𝐵) = (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵))
32eleq2i 2233 . 2 (𝐶 ∈ (𝐴𝐵) ↔ 𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)))
4 elun 3263 . . 3 (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵)))
5 djulf1or 7021 . . . . . 6 (inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)
6 f1ofn 5433 . . . . . 6 ((inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴) → (inl ↾ 𝐴) Fn 𝐴)
7 fvelrnb 5534 . . . . . 6 ((inl ↾ 𝐴) Fn 𝐴 → (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶))
85, 6, 7mp2b 8 . . . . 5 (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶)
9 eqcom 2167 . . . . . 6 (((inl ↾ 𝐴)‘𝑥) = 𝐶𝐶 = ((inl ↾ 𝐴)‘𝑥))
109rexbii 2473 . . . . 5 (∃𝑥𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶 ↔ ∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥))
118, 10bitri 183 . . . 4 (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥))
12 djurf1or 7022 . . . . . 6 (inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵)
13 f1ofn 5433 . . . . . 6 ((inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵) → (inr ↾ 𝐵) Fn 𝐵)
14 fvelrnb 5534 . . . . . 6 ((inr ↾ 𝐵) Fn 𝐵 → (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶))
1512, 13, 14mp2b 8 . . . . 5 (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶)
16 eqcom 2167 . . . . . 6 (((inr ↾ 𝐵)‘𝑥) = 𝐶𝐶 = ((inr ↾ 𝐵)‘𝑥))
1716rexbii 2473 . . . . 5 (∃𝑥𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶 ↔ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))
1815, 17bitri 183 . . . 4 (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))
1911, 18orbi12i 754 . . 3 ((𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵)) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
204, 19bitri 183 . 2 (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
213, 20bitri 183 1 (𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
Colors of variables: wff set class
Syntax hints:  wb 104  wo 698   = wceq 1343  wcel 2136  wrex 2445  cun 3114  c0 3409  {csn 3576   × cxp 4602  ran crn 4605  cres 4606   Fn wfn 5183  1-1-ontowf1o 5187  cfv 5188  1oc1o 6377  cdju 7002  inlcinl 7010  inrcinr 7011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-dju 7003  df-inl 7012  df-inr 7013
This theorem is referenced by:  djur  7034  exmidfodomrlemreseldju  7156
  Copyright terms: Public domain W3C validator