![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldju | GIF version |
Description: Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.) |
Ref | Expression |
---|---|
eldju | ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuunr 7067 | . . . 4 ⊢ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴 ⊔ 𝐵) | |
2 | 1 | eqcomi 2181 | . . 3 ⊢ (𝐴 ⊔ 𝐵) = (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) |
3 | 2 | eleq2i 2244 | . 2 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ 𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵))) |
4 | elun 3278 | . . 3 ⊢ (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵))) | |
5 | djulf1or 7057 | . . . . . 6 ⊢ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) | |
6 | f1ofn 5464 | . . . . . 6 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) → (inl ↾ 𝐴) Fn 𝐴) | |
7 | fvelrnb 5565 | . . . . . 6 ⊢ ((inl ↾ 𝐴) Fn 𝐴 → (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶)) | |
8 | 5, 6, 7 | mp2b 8 | . . . . 5 ⊢ (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶) |
9 | eqcom 2179 | . . . . . 6 ⊢ (((inl ↾ 𝐴)‘𝑥) = 𝐶 ↔ 𝐶 = ((inl ↾ 𝐴)‘𝑥)) | |
10 | 9 | rexbii 2484 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥)) |
11 | 8, 10 | bitri 184 | . . . 4 ⊢ (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥)) |
12 | djurf1or 7058 | . . . . . 6 ⊢ (inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) | |
13 | f1ofn 5464 | . . . . . 6 ⊢ ((inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) → (inr ↾ 𝐵) Fn 𝐵) | |
14 | fvelrnb 5565 | . . . . . 6 ⊢ ((inr ↾ 𝐵) Fn 𝐵 → (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥 ∈ 𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶)) | |
15 | 12, 13, 14 | mp2b 8 | . . . . 5 ⊢ (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥 ∈ 𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶) |
16 | eqcom 2179 | . . . . . 6 ⊢ (((inr ↾ 𝐵)‘𝑥) = 𝐶 ↔ 𝐶 = ((inr ↾ 𝐵)‘𝑥)) | |
17 | 16 | rexbii 2484 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) |
18 | 15, 17 | bitri 184 | . . . 4 ⊢ (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) |
19 | 11, 18 | orbi12i 764 | . . 3 ⊢ ((𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵)) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
20 | 4, 19 | bitri 184 | . 2 ⊢ (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
21 | 3, 20 | bitri 184 | 1 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 ∪ cun 3129 ∅c0 3424 {csn 3594 × cxp 4626 ran crn 4629 ↾ cres 4630 Fn wfn 5213 –1-1-onto→wf1o 5217 ‘cfv 5218 1oc1o 6412 ⊔ cdju 7038 inlcinl 7046 inrcinr 7047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-1st 6143 df-2nd 6144 df-1o 6419 df-dju 7039 df-inl 7048 df-inr 7049 |
This theorem is referenced by: djur 7070 exmidfodomrlemreseldju 7201 |
Copyright terms: Public domain | W3C validator |