| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldju | GIF version | ||
| Description: Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| eldju | ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuunr 7168 | . . . 4 ⊢ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴 ⊔ 𝐵) | |
| 2 | 1 | eqcomi 2209 | . . 3 ⊢ (𝐴 ⊔ 𝐵) = (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) |
| 3 | 2 | eleq2i 2272 | . 2 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ 𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵))) |
| 4 | elun 3314 | . . 3 ⊢ (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵))) | |
| 5 | djulf1or 7158 | . . . . . 6 ⊢ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) | |
| 6 | f1ofn 5523 | . . . . . 6 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) → (inl ↾ 𝐴) Fn 𝐴) | |
| 7 | fvelrnb 5626 | . . . . . 6 ⊢ ((inl ↾ 𝐴) Fn 𝐴 → (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶)) | |
| 8 | 5, 6, 7 | mp2b 8 | . . . . 5 ⊢ (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶) |
| 9 | eqcom 2207 | . . . . . 6 ⊢ (((inl ↾ 𝐴)‘𝑥) = 𝐶 ↔ 𝐶 = ((inl ↾ 𝐴)‘𝑥)) | |
| 10 | 9 | rexbii 2513 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥)) |
| 11 | 8, 10 | bitri 184 | . . . 4 ⊢ (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥)) |
| 12 | djurf1or 7159 | . . . . . 6 ⊢ (inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) | |
| 13 | f1ofn 5523 | . . . . . 6 ⊢ ((inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) → (inr ↾ 𝐵) Fn 𝐵) | |
| 14 | fvelrnb 5626 | . . . . . 6 ⊢ ((inr ↾ 𝐵) Fn 𝐵 → (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥 ∈ 𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶)) | |
| 15 | 12, 13, 14 | mp2b 8 | . . . . 5 ⊢ (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥 ∈ 𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶) |
| 16 | eqcom 2207 | . . . . . 6 ⊢ (((inr ↾ 𝐵)‘𝑥) = 𝐶 ↔ 𝐶 = ((inr ↾ 𝐵)‘𝑥)) | |
| 17 | 16 | rexbii 2513 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) |
| 18 | 15, 17 | bitri 184 | . . . 4 ⊢ (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) |
| 19 | 11, 18 | orbi12i 766 | . . 3 ⊢ ((𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵)) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
| 20 | 4, 19 | bitri 184 | . 2 ⊢ (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
| 21 | 3, 20 | bitri 184 | 1 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2176 ∃wrex 2485 ∪ cun 3164 ∅c0 3460 {csn 3633 × cxp 4673 ran crn 4676 ↾ cres 4677 Fn wfn 5266 –1-1-onto→wf1o 5270 ‘cfv 5271 1oc1o 6495 ⊔ cdju 7139 inlcinl 7147 inrcinr 7148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1st 6226 df-2nd 6227 df-1o 6502 df-dju 7140 df-inl 7149 df-inr 7150 |
| This theorem is referenced by: djur 7171 exmidfodomrlemreseldju 7308 |
| Copyright terms: Public domain | W3C validator |