| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldju | GIF version | ||
| Description: Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| eldju | ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuunr 7194 | . . . 4 ⊢ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴 ⊔ 𝐵) | |
| 2 | 1 | eqcomi 2211 | . . 3 ⊢ (𝐴 ⊔ 𝐵) = (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) |
| 3 | 2 | eleq2i 2274 | . 2 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ 𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵))) |
| 4 | elun 3322 | . . 3 ⊢ (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵))) | |
| 5 | djulf1or 7184 | . . . . . 6 ⊢ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) | |
| 6 | f1ofn 5545 | . . . . . 6 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) → (inl ↾ 𝐴) Fn 𝐴) | |
| 7 | fvelrnb 5649 | . . . . . 6 ⊢ ((inl ↾ 𝐴) Fn 𝐴 → (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶)) | |
| 8 | 5, 6, 7 | mp2b 8 | . . . . 5 ⊢ (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶) |
| 9 | eqcom 2209 | . . . . . 6 ⊢ (((inl ↾ 𝐴)‘𝑥) = 𝐶 ↔ 𝐶 = ((inl ↾ 𝐴)‘𝑥)) | |
| 10 | 9 | rexbii 2515 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥)) |
| 11 | 8, 10 | bitri 184 | . . . 4 ⊢ (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥)) |
| 12 | djurf1or 7185 | . . . . . 6 ⊢ (inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) | |
| 13 | f1ofn 5545 | . . . . . 6 ⊢ ((inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) → (inr ↾ 𝐵) Fn 𝐵) | |
| 14 | fvelrnb 5649 | . . . . . 6 ⊢ ((inr ↾ 𝐵) Fn 𝐵 → (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥 ∈ 𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶)) | |
| 15 | 12, 13, 14 | mp2b 8 | . . . . 5 ⊢ (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥 ∈ 𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶) |
| 16 | eqcom 2209 | . . . . . 6 ⊢ (((inr ↾ 𝐵)‘𝑥) = 𝐶 ↔ 𝐶 = ((inr ↾ 𝐵)‘𝑥)) | |
| 17 | 16 | rexbii 2515 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) |
| 18 | 15, 17 | bitri 184 | . . . 4 ⊢ (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) |
| 19 | 11, 18 | orbi12i 766 | . . 3 ⊢ ((𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵)) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
| 20 | 4, 19 | bitri 184 | . 2 ⊢ (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
| 21 | 3, 20 | bitri 184 | 1 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2178 ∃wrex 2487 ∪ cun 3172 ∅c0 3468 {csn 3643 × cxp 4691 ran crn 4694 ↾ cres 4695 Fn wfn 5285 –1-1-onto→wf1o 5289 ‘cfv 5290 1oc1o 6518 ⊔ cdju 7165 inlcinl 7173 inrcinr 7174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 df-1o 6525 df-dju 7166 df-inl 7175 df-inr 7176 |
| This theorem is referenced by: djur 7197 exmidfodomrlemreseldju 7339 |
| Copyright terms: Public domain | W3C validator |