![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldju | GIF version |
Description: Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.) |
Ref | Expression |
---|---|
eldju | ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuunr 7094 | . . . 4 ⊢ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴 ⊔ 𝐵) | |
2 | 1 | eqcomi 2193 | . . 3 ⊢ (𝐴 ⊔ 𝐵) = (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) |
3 | 2 | eleq2i 2256 | . 2 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ 𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵))) |
4 | elun 3291 | . . 3 ⊢ (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵))) | |
5 | djulf1or 7084 | . . . . . 6 ⊢ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) | |
6 | f1ofn 5481 | . . . . . 6 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) → (inl ↾ 𝐴) Fn 𝐴) | |
7 | fvelrnb 5583 | . . . . . 6 ⊢ ((inl ↾ 𝐴) Fn 𝐴 → (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶)) | |
8 | 5, 6, 7 | mp2b 8 | . . . . 5 ⊢ (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶) |
9 | eqcom 2191 | . . . . . 6 ⊢ (((inl ↾ 𝐴)‘𝑥) = 𝐶 ↔ 𝐶 = ((inl ↾ 𝐴)‘𝑥)) | |
10 | 9 | rexbii 2497 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥)) |
11 | 8, 10 | bitri 184 | . . . 4 ⊢ (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥)) |
12 | djurf1or 7085 | . . . . . 6 ⊢ (inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) | |
13 | f1ofn 5481 | . . . . . 6 ⊢ ((inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) → (inr ↾ 𝐵) Fn 𝐵) | |
14 | fvelrnb 5583 | . . . . . 6 ⊢ ((inr ↾ 𝐵) Fn 𝐵 → (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥 ∈ 𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶)) | |
15 | 12, 13, 14 | mp2b 8 | . . . . 5 ⊢ (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥 ∈ 𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶) |
16 | eqcom 2191 | . . . . . 6 ⊢ (((inr ↾ 𝐵)‘𝑥) = 𝐶 ↔ 𝐶 = ((inr ↾ 𝐵)‘𝑥)) | |
17 | 16 | rexbii 2497 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) |
18 | 15, 17 | bitri 184 | . . . 4 ⊢ (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) |
19 | 11, 18 | orbi12i 765 | . . 3 ⊢ ((𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵)) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
20 | 4, 19 | bitri 184 | . 2 ⊢ (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
21 | 3, 20 | bitri 184 | 1 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2160 ∃wrex 2469 ∪ cun 3142 ∅c0 3437 {csn 3607 × cxp 4642 ran crn 4645 ↾ cres 4646 Fn wfn 5230 –1-1-onto→wf1o 5234 ‘cfv 5235 1oc1o 6433 ⊔ cdju 7065 inlcinl 7073 inrcinr 7074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-iord 4384 df-on 4386 df-suc 4389 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-1st 6164 df-2nd 6165 df-1o 6440 df-dju 7066 df-inl 7075 df-inr 7076 |
This theorem is referenced by: djur 7097 exmidfodomrlemreseldju 7228 |
Copyright terms: Public domain | W3C validator |