Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldju | GIF version |
Description: Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.) |
Ref | Expression |
---|---|
eldju | ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuunr 7043 | . . . 4 ⊢ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴 ⊔ 𝐵) | |
2 | 1 | eqcomi 2174 | . . 3 ⊢ (𝐴 ⊔ 𝐵) = (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) |
3 | 2 | eleq2i 2237 | . 2 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ 𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵))) |
4 | elun 3268 | . . 3 ⊢ (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵))) | |
5 | djulf1or 7033 | . . . . . 6 ⊢ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) | |
6 | f1ofn 5443 | . . . . . 6 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) → (inl ↾ 𝐴) Fn 𝐴) | |
7 | fvelrnb 5544 | . . . . . 6 ⊢ ((inl ↾ 𝐴) Fn 𝐴 → (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶)) | |
8 | 5, 6, 7 | mp2b 8 | . . . . 5 ⊢ (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶) |
9 | eqcom 2172 | . . . . . 6 ⊢ (((inl ↾ 𝐴)‘𝑥) = 𝐶 ↔ 𝐶 = ((inl ↾ 𝐴)‘𝑥)) | |
10 | 9 | rexbii 2477 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ((inl ↾ 𝐴)‘𝑥) = 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥)) |
11 | 8, 10 | bitri 183 | . . . 4 ⊢ (𝐶 ∈ ran (inl ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥)) |
12 | djurf1or 7034 | . . . . . 6 ⊢ (inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) | |
13 | f1ofn 5443 | . . . . . 6 ⊢ ((inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) → (inr ↾ 𝐵) Fn 𝐵) | |
14 | fvelrnb 5544 | . . . . . 6 ⊢ ((inr ↾ 𝐵) Fn 𝐵 → (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥 ∈ 𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶)) | |
15 | 12, 13, 14 | mp2b 8 | . . . . 5 ⊢ (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥 ∈ 𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶) |
16 | eqcom 2172 | . . . . . 6 ⊢ (((inr ↾ 𝐵)‘𝑥) = 𝐶 ↔ 𝐶 = ((inr ↾ 𝐵)‘𝑥)) | |
17 | 16 | rexbii 2477 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐵 ((inr ↾ 𝐵)‘𝑥) = 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) |
18 | 15, 17 | bitri 183 | . . . 4 ⊢ (𝐶 ∈ ran (inr ↾ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) |
19 | 11, 18 | orbi12i 759 | . . 3 ⊢ ((𝐶 ∈ ran (inl ↾ 𝐴) ∨ 𝐶 ∈ ran (inr ↾ 𝐵)) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
20 | 4, 19 | bitri 183 | . 2 ⊢ (𝐶 ∈ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
21 | 3, 20 | bitri 183 | 1 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 703 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 ∪ cun 3119 ∅c0 3414 {csn 3583 × cxp 4609 ran crn 4612 ↾ cres 4613 Fn wfn 5193 –1-1-onto→wf1o 5197 ‘cfv 5198 1oc1o 6388 ⊔ cdju 7014 inlcinl 7022 inrcinr 7023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-dju 7015 df-inl 7024 df-inr 7025 |
This theorem is referenced by: djur 7046 exmidfodomrlemreseldju 7177 |
Copyright terms: Public domain | W3C validator |