Proof of Theorem fsnunf
Step | Hyp | Ref
| Expression |
1 | | simp1 987 |
. . 3
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → 𝐹:𝑆⟶𝑇) |
2 | | simp2l 1013 |
. . . . 5
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → 𝑋 ∈ 𝑉) |
3 | | simp3 989 |
. . . . 5
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → 𝑌 ∈ 𝑇) |
4 | | f1osng 5473 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑇) → {〈𝑋, 𝑌〉}:{𝑋}–1-1-onto→{𝑌}) |
5 | 2, 3, 4 | syl2anc 409 |
. . . 4
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → {〈𝑋, 𝑌〉}:{𝑋}–1-1-onto→{𝑌}) |
6 | | f1of 5432 |
. . . 4
⊢
({〈𝑋, 𝑌〉}:{𝑋}–1-1-onto→{𝑌} → {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) |
7 | 5, 6 | syl 14 |
. . 3
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) |
8 | | simp2r 1014 |
. . . 4
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → ¬ 𝑋 ∈ 𝑆) |
9 | | disjsn 3638 |
. . . 4
⊢ ((𝑆 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝑆) |
10 | 8, 9 | sylibr 133 |
. . 3
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝑆 ∩ {𝑋}) = ∅) |
11 | | fun 5360 |
. . 3
⊢ (((𝐹:𝑆⟶𝑇 ∧ {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) ∧ (𝑆 ∩ {𝑋}) = ∅) → (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌})) |
12 | 1, 7, 10, 11 | syl21anc 1227 |
. 2
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌})) |
13 | | snssi 3717 |
. . . . 5
⊢ (𝑌 ∈ 𝑇 → {𝑌} ⊆ 𝑇) |
14 | 13 | 3ad2ant3 1010 |
. . . 4
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → {𝑌} ⊆ 𝑇) |
15 | | ssequn2 3295 |
. . . 4
⊢ ({𝑌} ⊆ 𝑇 ↔ (𝑇 ∪ {𝑌}) = 𝑇) |
16 | 14, 15 | sylib 121 |
. . 3
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝑇 ∪ {𝑌}) = 𝑇) |
17 | | feq3 5322 |
. . 3
⊢ ((𝑇 ∪ {𝑌}) = 𝑇 → ((𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌}) ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶𝑇)) |
18 | 16, 17 | syl 14 |
. 2
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → ((𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌}) ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶𝑇)) |
19 | 12, 18 | mpbid 146 |
1
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶𝑇) |