Proof of Theorem fsnunf
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 999 |
. . 3
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → 𝐹:𝑆⟶𝑇) |
| 2 | | simp2l 1025 |
. . . . 5
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → 𝑋 ∈ 𝑉) |
| 3 | | simp3 1001 |
. . . . 5
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → 𝑌 ∈ 𝑇) |
| 4 | | f1osng 5548 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑇) → {〈𝑋, 𝑌〉}:{𝑋}–1-1-onto→{𝑌}) |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . 4
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → {〈𝑋, 𝑌〉}:{𝑋}–1-1-onto→{𝑌}) |
| 6 | | f1of 5507 |
. . . 4
⊢
({〈𝑋, 𝑌〉}:{𝑋}–1-1-onto→{𝑌} → {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) |
| 7 | 5, 6 | syl 14 |
. . 3
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) |
| 8 | | simp2r 1026 |
. . . 4
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → ¬ 𝑋 ∈ 𝑆) |
| 9 | | disjsn 3685 |
. . . 4
⊢ ((𝑆 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝑆) |
| 10 | 8, 9 | sylibr 134 |
. . 3
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝑆 ∩ {𝑋}) = ∅) |
| 11 | | fun 5433 |
. . 3
⊢ (((𝐹:𝑆⟶𝑇 ∧ {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) ∧ (𝑆 ∩ {𝑋}) = ∅) → (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌})) |
| 12 | 1, 7, 10, 11 | syl21anc 1248 |
. 2
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌})) |
| 13 | | snssi 3767 |
. . . . 5
⊢ (𝑌 ∈ 𝑇 → {𝑌} ⊆ 𝑇) |
| 14 | 13 | 3ad2ant3 1022 |
. . . 4
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → {𝑌} ⊆ 𝑇) |
| 15 | | ssequn2 3337 |
. . . 4
⊢ ({𝑌} ⊆ 𝑇 ↔ (𝑇 ∪ {𝑌}) = 𝑇) |
| 16 | 14, 15 | sylib 122 |
. . 3
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝑇 ∪ {𝑌}) = 𝑇) |
| 17 | | feq3 5395 |
. . 3
⊢ ((𝑇 ∪ {𝑌}) = 𝑇 → ((𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌}) ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶𝑇)) |
| 18 | 16, 17 | syl 14 |
. 2
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → ((𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌}) ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶𝑇)) |
| 19 | 12, 18 | mpbid 147 |
1
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶𝑇) |