ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsnunf GIF version

Theorem fsnunf 5784
Description: Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunf ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶𝑇)

Proof of Theorem fsnunf
StepHypRef Expression
1 simp1 1000 . . 3 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → 𝐹:𝑆𝑇)
2 simp2l 1026 . . . . 5 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → 𝑋𝑉)
3 simp3 1002 . . . . 5 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → 𝑌𝑇)
4 f1osng 5563 . . . . 5 ((𝑋𝑉𝑌𝑇) → {⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌})
52, 3, 4syl2anc 411 . . . 4 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → {⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌})
6 f1of 5522 . . . 4 ({⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌} → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
75, 6syl 14 . . 3 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
8 simp2r 1027 . . . 4 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → ¬ 𝑋𝑆)
9 disjsn 3695 . . . 4 ((𝑆 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋𝑆)
108, 9sylibr 134 . . 3 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝑆 ∩ {𝑋}) = ∅)
11 fun 5448 . . 3 (((𝐹:𝑆𝑇 ∧ {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌}) ∧ (𝑆 ∩ {𝑋}) = ∅) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌}))
121, 7, 10, 11syl21anc 1249 . 2 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌}))
13 snssi 3777 . . . . 5 (𝑌𝑇 → {𝑌} ⊆ 𝑇)
14133ad2ant3 1023 . . . 4 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → {𝑌} ⊆ 𝑇)
15 ssequn2 3346 . . . 4 ({𝑌} ⊆ 𝑇 ↔ (𝑇 ∪ {𝑌}) = 𝑇)
1614, 15sylib 122 . . 3 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝑇 ∪ {𝑌}) = 𝑇)
17 feq3 5410 . . 3 ((𝑇 ∪ {𝑌}) = 𝑇 → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌}) ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶𝑇))
1816, 17syl 14 . 2 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌}) ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶𝑇))
1912, 18mpbid 147 1 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶𝑇)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2176  cun 3164  cin 3165  wss 3166  c0 3460  {csn 3633  cop 3636  wf 5267  1-1-ontowf1o 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278
This theorem is referenced by:  tfrcllemsucfn  6439  ennnfonelemg  12774
  Copyright terms: Public domain W3C validator