![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fun2 | GIF version |
Description: The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015.) |
Ref | Expression |
---|---|
fun2 | ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fun 5407 | . 2 ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐶)) | |
2 | unidm 3293 | . . 3 ⊢ (𝐶 ∪ 𝐶) = 𝐶 | |
3 | feq3 5369 | . . 3 ⊢ ((𝐶 ∪ 𝐶) = 𝐶 → ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐶) ↔ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶(𝐶 ∪ 𝐶) ↔ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
5 | 1, 4 | sylib 122 | 1 ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∪ cun 3142 ∩ cin 3143 ∅c0 3437 ⟶wf 5231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-opab 4080 df-id 4311 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-fun 5237 df-fn 5238 df-f 5239 |
This theorem is referenced by: ac6sfi 6926 fseq1p1m1 10124 fxnn0nninf 10469 |
Copyright terms: Public domain | W3C validator |