ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2 GIF version

Theorem fun2 5428
Description: The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
fun2 (((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)

Proof of Theorem fun2
StepHypRef Expression
1 fun 5427 . 2 (((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐶))
2 unidm 3303 . . 3 (𝐶𝐶) = 𝐶
3 feq3 5389 . . 3 ((𝐶𝐶) = 𝐶 → ((𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐶) ↔ (𝐹𝐺):(𝐴𝐵)⟶𝐶))
42, 3ax-mp 5 . 2 ((𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐶) ↔ (𝐹𝐺):(𝐴𝐵)⟶𝐶)
51, 4sylib 122 1 (((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  cun 3152  cin 3153  c0 3447  wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-id 4325  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-f 5259
This theorem is referenced by:  ac6sfi  6956  fseq1p1m1  10163  fxnn0nninf  10513
  Copyright terms: Public domain W3C validator