ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsng GIF version

Theorem fsng 5766
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.)
Assertion
Ref Expression
fsng ((𝐴𝐶𝐵𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩}))

Proof of Theorem fsng
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3649 . . . 4 (𝑎 = 𝐴 → {𝑎} = {𝐴})
21feq2d 5423 . . 3 (𝑎 = 𝐴 → (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝑏}))
3 opeq1 3825 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
43sneqd 3651 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, 𝑏⟩} = {⟨𝐴, 𝑏⟩})
54eqeq2d 2218 . . 3 (𝑎 = 𝐴 → (𝐹 = {⟨𝑎, 𝑏⟩} ↔ 𝐹 = {⟨𝐴, 𝑏⟩}))
62, 5bibi12d 235 . 2 (𝑎 = 𝐴 → ((𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {⟨𝑎, 𝑏⟩}) ↔ (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {⟨𝐴, 𝑏⟩})))
7 sneq 3649 . . . 4 (𝑏 = 𝐵 → {𝑏} = {𝐵})
8 feq3 5420 . . . 4 ({𝑏} = {𝐵} → (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝐵}))
97, 8syl 14 . . 3 (𝑏 = 𝐵 → (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝐵}))
10 opeq2 3826 . . . . 5 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
1110sneqd 3651 . . . 4 (𝑏 = 𝐵 → {⟨𝐴, 𝑏⟩} = {⟨𝐴, 𝐵⟩})
1211eqeq2d 2218 . . 3 (𝑏 = 𝐵 → (𝐹 = {⟨𝐴, 𝑏⟩} ↔ 𝐹 = {⟨𝐴, 𝐵⟩}))
139, 12bibi12d 235 . 2 (𝑏 = 𝐵 → ((𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {⟨𝐴, 𝑏⟩}) ↔ (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩})))
14 vex 2776 . . 3 𝑎 ∈ V
15 vex 2776 . . 3 𝑏 ∈ V
1614, 15fsn 5765 . 2 (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {⟨𝑎, 𝑏⟩})
176, 13, 16vtocl2g 2839 1 ((𝐴𝐶𝐵𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {csn 3638  cop 3641  wf 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287
This theorem is referenced by:  fsn2  5767  xpsng  5768  ftpg  5781  fseq1p1m1  10236  cats1un  11197  intopsn  13274  grp1inv  13514
  Copyright terms: Public domain W3C validator