ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnfvima GIF version

Theorem fnfvima 5703
Description: The function value of an operand in a set is contained in the image of that set, using the Fn abbreviation. (Contributed by Stefan O'Rear, 10-Mar-2015.)
Assertion
Ref Expression
fnfvima ((𝐹 Fn 𝐴𝑆𝐴𝑋𝑆) → (𝐹𝑋) ∈ (𝐹𝑆))

Proof of Theorem fnfvima
StepHypRef Expression
1 fnfun 5269 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
213ad2ant1 1003 . . 3 ((𝐹 Fn 𝐴𝑆𝐴𝑋𝑆) → Fun 𝐹)
3 simp2 983 . . . 4 ((𝐹 Fn 𝐴𝑆𝐴𝑋𝑆) → 𝑆𝐴)
4 fndm 5271 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
543ad2ant1 1003 . . . 4 ((𝐹 Fn 𝐴𝑆𝐴𝑋𝑆) → dom 𝐹 = 𝐴)
63, 5sseqtrrd 3167 . . 3 ((𝐹 Fn 𝐴𝑆𝐴𝑋𝑆) → 𝑆 ⊆ dom 𝐹)
72, 6jca 304 . 2 ((𝐹 Fn 𝐴𝑆𝐴𝑋𝑆) → (Fun 𝐹𝑆 ⊆ dom 𝐹))
8 simp3 984 . 2 ((𝐹 Fn 𝐴𝑆𝐴𝑋𝑆) → 𝑋𝑆)
9 funfvima2 5701 . 2 ((Fun 𝐹𝑆 ⊆ dom 𝐹) → (𝑋𝑆 → (𝐹𝑋) ∈ (𝐹𝑆)))
107, 8, 9sylc 62 1 ((𝐹 Fn 𝐴𝑆𝐴𝑋𝑆) → (𝐹𝑋) ∈ (𝐹𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1335  wcel 2128  wss 3102  dom cdm 4588  cima 4591  Fun wfun 5166   Fn wfn 5167  cfv 5172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4028  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-fv 5180
This theorem is referenced by:  iseqf1olemnab  10396  ennnfonelemrn  12218  lmtopcnp  12720
  Copyright terms: Public domain W3C validator