ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnco GIF version

Theorem fnco 5431
Description: Composition of two functions. (Contributed by NM, 22-May-2006.)
Assertion
Ref Expression
fnco ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)

Proof of Theorem fnco
StepHypRef Expression
1 fnfun 5418 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
2 fnfun 5418 . . . 4 (𝐺 Fn 𝐵 → Fun 𝐺)
3 funco 5358 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
41, 2, 3syl2an 289 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → Fun (𝐹𝐺))
543adant3 1041 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → Fun (𝐹𝐺))
6 fndm 5420 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76sseq2d 3254 . . . . . 6 (𝐹 Fn 𝐴 → (ran 𝐺 ⊆ dom 𝐹 ↔ ran 𝐺𝐴))
87biimpar 297 . . . . 5 ((𝐹 Fn 𝐴 ∧ ran 𝐺𝐴) → ran 𝐺 ⊆ dom 𝐹)
9 dmcosseq 4996 . . . . 5 (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹𝐺) = dom 𝐺)
108, 9syl 14 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐺𝐴) → dom (𝐹𝐺) = dom 𝐺)
11103adant2 1040 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom (𝐹𝐺) = dom 𝐺)
12 fndm 5420 . . . 4 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
13123ad2ant2 1043 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom 𝐺 = 𝐵)
1411, 13eqtrd 2262 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom (𝐹𝐺) = 𝐵)
15 df-fn 5321 . 2 ((𝐹𝐺) Fn 𝐵 ↔ (Fun (𝐹𝐺) ∧ dom (𝐹𝐺) = 𝐵))
165, 14, 15sylanbrc 417 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wss 3197  dom cdm 4719  ran crn 4720  ccom 4723  Fun wfun 5312   Fn wfn 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321
This theorem is referenced by:  fco  5491  fnfco  5502  updjudhcoinlf  7255  updjudhcoinrg  7256  prdsinvlem  13649  upxp  14954  uptx  14956
  Copyright terms: Public domain W3C validator