| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnco | GIF version | ||
| Description: Composition of two functions. (Contributed by NM, 22-May-2006.) |
| Ref | Expression |
|---|---|
| fnco | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5356 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | fnfun 5356 | . . . 4 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
| 3 | funco 5299 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
| 4 | 1, 2, 3 | syl2an 289 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → Fun (𝐹 ∘ 𝐺)) |
| 5 | 4 | 3adant3 1019 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → Fun (𝐹 ∘ 𝐺)) |
| 6 | fndm 5358 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 7 | 6 | sseq2d 3214 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (ran 𝐺 ⊆ dom 𝐹 ↔ ran 𝐺 ⊆ 𝐴)) |
| 8 | 7 | biimpar 297 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐴) → ran 𝐺 ⊆ dom 𝐹) |
| 9 | dmcosseq 4938 | . . . . 5 ⊢ (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹 ∘ 𝐺) = dom 𝐺) | |
| 10 | 8, 9 | syl 14 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐴) → dom (𝐹 ∘ 𝐺) = dom 𝐺) |
| 11 | 10 | 3adant2 1018 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom (𝐹 ∘ 𝐺) = dom 𝐺) |
| 12 | fndm 5358 | . . . 4 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
| 13 | 12 | 3ad2ant2 1021 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom 𝐺 = 𝐵) |
| 14 | 11, 13 | eqtrd 2229 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom (𝐹 ∘ 𝐺) = 𝐵) |
| 15 | df-fn 5262 | . 2 ⊢ ((𝐹 ∘ 𝐺) Fn 𝐵 ↔ (Fun (𝐹 ∘ 𝐺) ∧ dom (𝐹 ∘ 𝐺) = 𝐵)) | |
| 16 | 5, 14, 15 | sylanbrc 417 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ⊆ wss 3157 dom cdm 4664 ran crn 4665 ∘ ccom 4668 Fun wfun 5253 Fn wfn 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 |
| This theorem is referenced by: fco 5426 fnfco 5435 updjudhcoinlf 7155 updjudhcoinrg 7156 prdsinvlem 13310 upxp 14592 uptx 14594 |
| Copyright terms: Public domain | W3C validator |