ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnco GIF version

Theorem fnco 5296
Description: Composition of two functions. (Contributed by NM, 22-May-2006.)
Assertion
Ref Expression
fnco ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)

Proof of Theorem fnco
StepHypRef Expression
1 fnfun 5285 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
2 fnfun 5285 . . . 4 (𝐺 Fn 𝐵 → Fun 𝐺)
3 funco 5228 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
41, 2, 3syl2an 287 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → Fun (𝐹𝐺))
543adant3 1007 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → Fun (𝐹𝐺))
6 fndm 5287 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76sseq2d 3172 . . . . . 6 (𝐹 Fn 𝐴 → (ran 𝐺 ⊆ dom 𝐹 ↔ ran 𝐺𝐴))
87biimpar 295 . . . . 5 ((𝐹 Fn 𝐴 ∧ ran 𝐺𝐴) → ran 𝐺 ⊆ dom 𝐹)
9 dmcosseq 4875 . . . . 5 (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹𝐺) = dom 𝐺)
108, 9syl 14 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐺𝐴) → dom (𝐹𝐺) = dom 𝐺)
11103adant2 1006 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom (𝐹𝐺) = dom 𝐺)
12 fndm 5287 . . . 4 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
13123ad2ant2 1009 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom 𝐺 = 𝐵)
1411, 13eqtrd 2198 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom (𝐹𝐺) = 𝐵)
15 df-fn 5191 . 2 ((𝐹𝐺) Fn 𝐵 ↔ (Fun (𝐹𝐺) ∧ dom (𝐹𝐺) = 𝐵))
165, 14, 15sylanbrc 414 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wss 3116  dom cdm 4604  ran crn 4605  ccom 4608  Fun wfun 5182   Fn wfn 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191
This theorem is referenced by:  fco  5353  fnfco  5362  updjudhcoinlf  7045  updjudhcoinrg  7046  upxp  12912  uptx  12914
  Copyright terms: Public domain W3C validator