| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpreima | GIF version | ||
| Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| elpreima | ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimass 5087 | . . . . 5 ⊢ (◡𝐹 “ 𝐶) ⊆ dom 𝐹 | |
| 2 | 1 | sseli 3220 | . . . 4 ⊢ (𝐵 ∈ (◡𝐹 “ 𝐶) → 𝐵 ∈ dom 𝐹) |
| 3 | fndm 5416 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | eleq2d 2299 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
| 5 | 2, 4 | imbitrid 154 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) → 𝐵 ∈ 𝐴)) |
| 6 | fnfun 5414 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 7 | fvimacnvi 5742 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ (◡𝐹 “ 𝐶)) → (𝐹‘𝐵) ∈ 𝐶) | |
| 8 | 6, 7 | sylan 283 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ (◡𝐹 “ 𝐶)) → (𝐹‘𝐵) ∈ 𝐶) |
| 9 | 8 | ex 115 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) → (𝐹‘𝐵) ∈ 𝐶)) |
| 10 | 5, 9 | jcad 307 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) → (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) |
| 11 | fvimacnv 5743 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ((𝐹‘𝐵) ∈ 𝐶 ↔ 𝐵 ∈ (◡𝐹 “ 𝐶))) | |
| 12 | 11 | funfni 5419 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) ∈ 𝐶 ↔ 𝐵 ∈ (◡𝐹 “ 𝐶))) |
| 13 | 12 | biimpd 144 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) ∈ 𝐶 → 𝐵 ∈ (◡𝐹 “ 𝐶))) |
| 14 | 13 | expimpd 363 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶) → 𝐵 ∈ (◡𝐹 “ 𝐶))) |
| 15 | 10, 14 | impbid 129 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 ◡ccnv 4715 dom cdm 4716 “ cima 4719 Fun wfun 5308 Fn wfn 5309 ‘cfv 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 |
| This theorem is referenced by: fniniseg 5748 fncnvima2 5749 rexsupp 5752 unpreima 5753 respreima 5756 fisumss 11889 fprodssdc 12087 tanvalap 12205 1arith 12876 ghmpreima 13789 ghmnsgpreima 13792 kerf1ghm 13797 psrbaglesuppg 14621 psrbagfi 14622 cncnpi 14887 cncnp 14889 cnpdis 14901 tx1cn 14928 tx2cn 14929 txcnmpt 14932 txdis1cn 14937 xmeterval 15094 cnbl0 15193 cnblcld 15194 |
| Copyright terms: Public domain | W3C validator |