| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpreima | GIF version | ||
| Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| elpreima | ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimass 5051 | . . . . 5 ⊢ (◡𝐹 “ 𝐶) ⊆ dom 𝐹 | |
| 2 | 1 | sseli 3191 | . . . 4 ⊢ (𝐵 ∈ (◡𝐹 “ 𝐶) → 𝐵 ∈ dom 𝐹) |
| 3 | fndm 5379 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | eleq2d 2276 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
| 5 | 2, 4 | imbitrid 154 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) → 𝐵 ∈ 𝐴)) |
| 6 | fnfun 5377 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 7 | fvimacnvi 5704 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ (◡𝐹 “ 𝐶)) → (𝐹‘𝐵) ∈ 𝐶) | |
| 8 | 6, 7 | sylan 283 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ (◡𝐹 “ 𝐶)) → (𝐹‘𝐵) ∈ 𝐶) |
| 9 | 8 | ex 115 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) → (𝐹‘𝐵) ∈ 𝐶)) |
| 10 | 5, 9 | jcad 307 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) → (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) |
| 11 | fvimacnv 5705 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ((𝐹‘𝐵) ∈ 𝐶 ↔ 𝐵 ∈ (◡𝐹 “ 𝐶))) | |
| 12 | 11 | funfni 5382 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) ∈ 𝐶 ↔ 𝐵 ∈ (◡𝐹 “ 𝐶))) |
| 13 | 12 | biimpd 144 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) ∈ 𝐶 → 𝐵 ∈ (◡𝐹 “ 𝐶))) |
| 14 | 13 | expimpd 363 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶) → 𝐵 ∈ (◡𝐹 “ 𝐶))) |
| 15 | 10, 14 | impbid 129 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 ◡ccnv 4679 dom cdm 4680 “ cima 4683 Fun wfun 5271 Fn wfn 5272 ‘cfv 5277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-fv 5285 |
| This theorem is referenced by: fniniseg 5710 fncnvima2 5711 rexsupp 5714 unpreima 5715 respreima 5718 fisumss 11753 fprodssdc 11951 tanvalap 12069 1arith 12740 ghmpreima 13652 ghmnsgpreima 13655 kerf1ghm 13660 psrbaglesuppg 14484 psrbagfi 14485 cncnpi 14750 cncnp 14752 cnpdis 14764 tx1cn 14791 tx2cn 14792 txcnmpt 14795 txdis1cn 14800 xmeterval 14957 cnbl0 15056 cnblcld 15057 |
| Copyright terms: Public domain | W3C validator |